Electronic stopping cross sections for protons in Al2O3: an experimental and theoretical study

  • M. Behar
  • R.C. Fadanelli
  • L.C.C.M. Nagamine
  • E.D. Cantero
  • G.H. Lantschner
  • J.C. Eckardt
  • N.R. Arista
  • R. Garcia-Molina
  • I. Abril
Regular Article

Abstract

The electronic stopping cross section (SCS) of Al2O3 for proton beams is studied both experimentally and theoretically. The measurements are made for proton energies from 40 keV up to 1 MeV, which cover the maximum stopping region, using two experimental methods, the transmission technique at low energies (~40–175 keV) and the Rutherford backscattering at high energies (≈190–1000 keV). These new data reveal an increment of 16% in the SCS around the maximum stopping with respect to older measurements. The theoretical study includes electronic stopping power calculations based on the dielectric formalism and on the transport cross section (TCS) model to describe the electron excitations of Al2O3. The non-linear TCS calculations of the SCS for valence electrons together with the generalized oscillator strengths (GOS) model for the core electrons compare well with the experimental data in the whole range of energies considered.

Keywords

Atomic and Molecular Collisions 

References

  1. 1.
    M.J. de Castro, A. Suárez-García, R. Serna, C.N. Afonso, J.G. López, Opt. Mater. 29, 539 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    B. Handke, J.B. Simonsen, M. Bech, Z. Li, P.J. Møller, Surf. Sci. 600, 5123 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    T. Murakami, J.H. Ouyang, S. Sasaki, K. Umeda, Y. Yoneyama, Tribol. Int. 40, 246 (2007)CrossRefGoogle Scholar
  4. 4.
    K. Vanbesien, P. De Visschere, P.F. Smet, D. Poelman, Thin Solid Films 514, 323 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    Y. Li, S. Zhang, Y. Liu, T.P. Chen, T. Sritharan, C. Xu, J. Nanosci. Nanotech. 9, 1 (2009)CrossRefGoogle Scholar
  6. 6.
    Materials Science with Ion Beams, Topics in Applied Physics, edited by H. Bernas (Springer, Heidelberg, 2009), Vol. 116Google Scholar
  7. 7.
    D. Emfietzoglou, R. Garcia-Molina, I. Kyriakou, I. Abril, H. Nikjoo, Phys. Med. Biol. 54, 3451 (2009)CrossRefGoogle Scholar
  8. 8.
    J.E. Turner, Atoms, Radiation and Radiation Protection (Wiley-VCH, Weinheim, 2007)Google Scholar
  9. 9.
    A. van Wijngaarden, H.E. Duckworth, Can. J. Phys. 40, 1749 (1962)ADSCrossRefGoogle Scholar
  10. 10.
    F.W. Reuter, H.P. Smith Jr., J. Appl. Phys. 43, 4228 (1972)ADSCrossRefGoogle Scholar
  11. 11.
    W. Bauer, R.G. Musket, J. Appl. Phys. 44, 2606 (1973)ADSCrossRefGoogle Scholar
  12. 12.
    P. Bauer, W. Rossler, P. Mertens, Nucl. Instrum. Methods Phys. Res. B 69, 46 (1992)ADSCrossRefGoogle Scholar
  13. 13.
    D.C. Turner, N.F. Mangelson, L.B. Rees, Nucl. Instrum. Methods Phys. Res. B 103, 28 (1995)ADSCrossRefGoogle Scholar
  14. 14.
    K. Eder, D. Semrad, P. Bauer, R. Golser, P. Maier-Komor, F. Aumayr, M. Peñalba, A. Arnau, J.M. Ugalde, P.M. Echenique, Phys. Rev. Lett. 79, 4112 (1997)ADSCrossRefGoogle Scholar
  15. 15.
    M. Peñalba, J.I. Juaristi, E. Zarate, A. Arnau, P. Bauer, Phys. Rev. A 64, 012902 (2001)ADSCrossRefGoogle Scholar
  16. 16.
    J.F. Ziegler, J.P. Biersack, M.D. Ziegler, SRIM, The Stopping and Range of Ions in Matter (SRIM Co., Chester, MD, 2008), http://www.srim.org
  17. 17.
    H. Paul, Experimental Stopping Power Compilation, http://www.exphys.uni-linz.ac.at/Stopping/
  18. 18.
    W.K. Chu, J.M. Meyer, M.A. Nicolet, Backscattering Spectrometry (Academic Press, New York, 1978)Google Scholar
  19. 19.
    A. Valenzuela, J.C. Eckardt, Rev. Sci. Instrum. 42, 127 (1971)ADSCrossRefGoogle Scholar
  20. 20.
    I. Abril, R. Garcia-Molina, C.D. Denton, F.J. Pérez-Pérez, N.R. Arista, Phys. Rev. A 58, 357 (1998)ADSCrossRefGoogle Scholar
  21. 21.
    S. Heredia-Avalos, R. Garcia-Molina, J.M. Fernández-Varea, I. Abril, Phys. Rev. A 72, 052902 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    A.F. Lifschitz, N.R. Arista, Phys. Rev. A 57, 200 (1998)ADSCrossRefGoogle Scholar
  23. 23.
    A.F. Lifschitz, N.R. Arista, Phys. Rev. A 58, 2168 (1998)ADSCrossRefGoogle Scholar
  24. 24.
    P. Sigmund, Particle Penetration and Radiation Effects, General Aspects and Stopping of Swift Point Charges (Springer, Berlin, 2006)Google Scholar
  25. 25.
    G. Schiwietz, P.L. Grande, Nucl. Instrum. Methods Phys. Res. B 175–177, 125 (2001) CrossRefGoogle Scholar
  26. 26.
    J. Lindhard, K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 28, (1954)Google Scholar
  27. 27.
    W. Brandt, M. Kitagawa, Phys. Rev. B 25, 5631 (1982)ADSCrossRefGoogle Scholar
  28. 28.
    W. Brandt, Nucl. Instrum. Methods Phys. Res. 194, 13 (1982)ADSCrossRefGoogle Scholar
  29. 29.
    J.C. Moreno-Marín, I. Abril, R. Garcia-Molina, Nucl. Instrum. Methods Phys. Res. B 193, 30 (2002)ADSCrossRefGoogle Scholar
  30. 30.
    R.F. Egerton, Electron Energy-Loss Spectroscopy in the Electron Microscope (Plenum Press, New York, 1989) Google Scholar
  31. 31.
    N.D. Mermin, Phys. Rev. B 1, 2362 (1970)ADSCrossRefGoogle Scholar
  32. 32.
    H.J. Hagemann, W. Gudat, C. Kunz, J. Opt. Soc. Am. 65, 742 (1975)ADSCrossRefGoogle Scholar
  33. 33.
    R.H. French, H. Mullejans, D. Jones, J. Am. Ceram. Soc. 81, 2549 (1998)CrossRefGoogle Scholar
  34. 34.
    M. Behar, R.C. Fadanelli, I. Abril, R. Garcia-Molina, L.C.C.M. Nagamine, Eur. Phys. J. D 64, 297 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    I. Abril, R. Garcia-Molina, C.F. Sanz, N.R. Arista, Nucl. Instrum. Methods Phys. Res. B 190, 89 (2002)ADSCrossRefGoogle Scholar
  36. 36.
    N.R. Arista, A.F. Lifschitz, Advances in Quantum Chemistry, Theory of the Interaction of Swift Ions with Matter, Part I (Elsevier, Amsterdam, 2004), Vol. 45, p. 47Google Scholar
  37. 37.
    L. de Ferrariis, N.R. Arista, Phys. Rev. A 29, 2145 (1984)ADSCrossRefGoogle Scholar
  38. 38.
    N.R. Arista, Nucl. Instrum. Methods Phys. Res. B 195, 91 (2002)ADSCrossRefGoogle Scholar
  39. 39.
    D. Pines, Elementary Excitations in Solids (W.A. Benjamin Inc., New York, 1964)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • M. Behar
    • 1
  • R.C. Fadanelli
    • 1
  • L.C.C.M. Nagamine
    • 2
  • E.D. Cantero
    • 3
  • G.H. Lantschner
    • 3
  • J.C. Eckardt
    • 3
  • N.R. Arista
    • 3
  • R. Garcia-Molina
    • 4
  • I. Abril
    • 5
  1. 1.Instituto de Fisica, Universidade Federal do Rio Grande do SulPorto AlegreBrazil
  2. 2.Instituto de Fisica, Universidade de São PauloSão PauloBrazil
  3. 3.Centro Atómico Bariloche and Instituto Balseiro, Comisión Nacional de Energía AtómicaSan Carlos de BarilocheArgentina
  4. 4.Departamento de Física – Centro de Investigación en Óptica y NanofísicaUniversidad de MurciaMurciaSpain
  5. 5.Departament de Física AplicadaUniversitat d’AlacantAlacantSpain

Personalised recommendations