Plasma non-equilibrium of the DC normal glow discharges in atmospheric pressure atomic and molecular gases

  • V.I. Arkhipenko
  • A.A. Kirillov
  • Y.A. Safronau
  • L.V. Simonchik
  • S.M. Zgirouski
Regular Article

Abstract

Electrical and spectroscopic results of comprehensive investigations of atmospheric pressure glow discharges in helium, argon, nitrogen and air in a large current range are presented. Our attention in these investigations is mainly focused on the characterization of positive column plasmas at discharge gap of 10 mm. It was shown that helium, nitrogen and air positive columns transform from diffuse to constricted mode when discharge current increases. In argon discharge, it is constricted in the whole range of investigated currents. Reduced electric field, gas temperature, average electron energy and electron concentration were determined. The positive column plasmas of all the atmospheric pressure glow discharges studied are non-equilibrium and weakly ionized. Plasma non-equilibrium degree in atomic gases of helium and argon is essentially higher than in molecular nitrogen and air. For all gases, plasma non-equilibrium degree in a positive column decreases with discharge current increase.

Keywords

Plasma Physics 

References

  1. 1.
    J.R. Roth, J. Rahel, X. Dai, D.M. Sherman, J. Phys. D 38, 555 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    E. Temmerman, Yu. Akishev, N. Trushkin, C. Leys, J. Verschuren, J. Phys. D 38, 505 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    K.H. Becker, K.H. Schoenbach, J.G. Eden, J. Phys. D 39, R55 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    D. Dudek, N. Bibinov, J. Engemann, P. Awakowicz, J. Phys. D 40, 7367 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    F. Iza, G.J. Kim, S.M. Lee, J.K. Lee, J.L. Walsh, Y.T. Zhang, M.G. Kong, Plasma Process. Polym. 5, 322 (2008)CrossRefGoogle Scholar
  6. 6.
    J. Tynan, V.J. Law, P. Ward, A.M. Hynes, J. Cullen, G. Byrne, S. Daniels, D.P. Dowling, Plasma Source Sci. Technol. 19, 015015 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    B.R. Locke, K.-Y. Shih, Plasma Source Sci. Technol. 20, 034006 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    R.J. Barker, K.H. Becker, U. Kogelschatz, K.H. Schoenbach, Non-Equilibrium Air Plasmas at Atmospheric Pressure (Institute of Physics, Bristol, 2005)Google Scholar
  9. 9.
    A. Fridman, Plasma Chemistry (Cambridge University Press, New York, 2008)Google Scholar
  10. 10.
    K.H. Becker, A.H. Kersten, J. Hopwood, J.L. Lopez, Eur. Phys. J. D 60, 437 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    V.I. Arkhipenko, A.A. Kirillov, Y.A. Safronau, L.V. Simonchik, Eur. Phys. J. D 60, 455 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    V.I. Arkhipenko, A.A. Kirillov, Ya.A. Safronau, L.V. Simonchik, S.M. Zgirouski, Plasma Source Sci. Technol. 17, 045017 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    V.I. Arkhipenko, A.A. Kirillov, Ya.A. Safronau, L.V. Simonchik, S.M. Zgirouski, Plasma Source Sci. Technol. 18, 045013 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    Y. Akishev, M. Grushin, V. Karalnik, I. Kochetov, A. Napartovich, N. Trushkin, J. Phys.: Conf. Ser. 257, 012014 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    Z. Machala, E. Marode, C.O. Laux, C.H. Kruger, J. Adv. Oxid. Technol. 7, 133 (2004)Google Scholar
  16. 16.
    D. Staack, B. Farouk, A.F. Gutsol, A.A. Fridman, Plasma Source Sci. Technol. 14, 700 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    V.N. Kolesnikov, Trudy FIAN: Fizicheskaia Optika 30, 66 (1964)Google Scholar
  18. 18.
    G.V. Naidis, Plasma Source Sci. Technol. 16, 297 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    V.I. Arkhipenko, A.A. Kirillov, L.V. Simonchik, S.M. Zgirouski, Plasma Source Sci. Technol. 14, 757 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    V.I. Arkhipenko, S.M. Zgirouski, A.A. Kirillov, L.V. Simonchik, in Spectroscopy of Plasma and Natural Objects (in Russian), edited by V.I. Arkhipenko, V.S. Burakov, A.F. Cherniavskiy (Belaruskaja Navuka, Minsk, 2007)Google Scholar
  21. 21.
    V.P. Stepaniuk, T. Ioppolo, M.V. Ötügen, V.A. Sheverev, J. Appl. Phys. 102, 123302 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    L.I. Kiselevskii, S.L. Mazurenko, A.N. Makarevich, D.A. Solovianchik, in Proceedings of the 7thESCAMPIG, Bari, 1984, p. 160Google Scholar
  23. 23.
    V.I. Arkhipenko, A.A. Kirillov, L.V. Simonchik, S.M. Zgirouski, in Proceedings of the 4th International Conference Plasma Physics and Plasma Technology, Minsk, 2003, Vol. 1, p. 175Google Scholar
  24. 24.
    P. Mezei, T. Cserfalvi, M. Janossy, J. Phys. D 34, 1914 (2001)ADSCrossRefGoogle Scholar
  25. 25.
    W.A. Gambling, H. Edels, Br. J. Appl. Phys. 5, 36 (1954)ADSCrossRefGoogle Scholar
  26. 26.
    C.G. Suits, Phys. Rev. 55, 561 (1939)ADSCrossRefGoogle Scholar
  27. 27.
    L.G.H. Huxley, R.W. Crompton, The Diffusion and Drift of Electrons in Gases (Wiley, New York, 1974)Google Scholar
  28. 28.
    H.R. Griem, Spectral Lines Broadening (Academic Press, New York, London, 1974)Google Scholar
  29. 29.
    G.J.M. Hagelaar, BOLSIG + : electron Boltzmann equation solver, http://www.bolsig.laplace.univ-tlse.fr (accessed in May 2010)
  30. 30.
    G.J.M. Hagelaar, L.C. Pitchford, Plasma Source Sci. Technol. 14, 722 (2005)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • V.I. Arkhipenko
    • 1
  • A.A. Kirillov
    • 1
  • Y.A. Safronau
    • 1
  • L.V. Simonchik
    • 1
  • S.M. Zgirouski
    • 1
  1. 1.Gas Discharge Physics LaboratoryStepanov Institute of Physics of the NAS of BelarusMinskBelarus

Personalised recommendations