On the bound states in the muonic molecular ions

Regular Article

Abstract.

The mass corrections to the bound state energies of the three-body muonic molecular ions ppμ, pdμ, ptμ, ddμ, dtμ and ttμ are determined numerically from the results of highly accurate computations. The total energies and some other bound state properties of these ions are evaluated to very high accuracy for the bound S(L = 0) − , P(L = 1) − and D(L = 2)-states. In these highly accurate calculations we used the most recent and accurate masses of particles m p , m d , m t and m μ known from high energy experiments. We also investigate some bound state properties of the muonic molecular ions. In particular, we determine the hyperfine structure splittings of the ground states of the pdμ,ptμ and dtμ ions. In these calculations we used our highly accurate expectation values of the interparticle delta-functions obtained in recent computations. The corresponding hyperfine structure splittings, e.g., Δ 12 = 1.3400149 × 107 MHz and Δ 23 = 3.3518984 × 107 MHz for the ptμ ion, can directly be measured in modern experiments. Analogous hyperfine structure splittings are evaluated to very high accuracy for all five bound S(L = 0)-states in the three symmetric muonic molecular ions: ppμ, ddμ and ttμ.

Keywords

Atomic Physics 

References

  1. 1.
    A.M. Frolov, D.M. Wardlaw, Eur. Phys. J. D 63, 339 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    A.M. Frolov, J. Phys. B 34, 3813 (2001) ADSCrossRefGoogle Scholar
  3. 3.
    A.M. Frolov, Phys. Rev. E 64, 036704 (2001) ADSCrossRefGoogle Scholar
  4. 4.
    CRC Handbook of Chemistry and Physics, 92nd edn. edited by W.M. Haynes (Taylor and Francis Group, Boca Raton, 2011-2012)Google Scholar
  5. 5.
    D.A. Varshalovich, A.N. Moskalev, V.K. Khersonskii, Kvantovaya Teoriya Uglovogo Momenta, [Quantum Theory of Angular Momentum] (Nauka, Moscow, 1975) (in Russian)Google Scholar
  6. 6.
    M.E. Rose, Elementary Theory of Angular Momentum (Dover Publications, New York, 1995)Google Scholar
  7. 7.
    A.M. Frolov, J. Phys. B 35, L331 (2002) ADSCrossRefGoogle Scholar
  8. 8.
    A.M. Frolov, D.M. Bishop, Phys. Rev. A 45, 6236 (1992) ADSCrossRefGoogle Scholar
  9. 9.
    A.M. Frolov, J. Phys. B 25, 3059 (1991) ADSCrossRefGoogle Scholar
  10. 10.
    D.H. Bailey, ACM Trans. Math. Soft. 21, 379 (1995)MATHCrossRefGoogle Scholar
  11. 11.
    D.H. Bailey, Comput. Sci. Eng. 2, 24 (2000)CrossRefGoogle Scholar
  12. 12.
    S. Kilic, J.-P. Karr, L. Hilico, Phys. Rev. A 66, 22101 (2002) CrossRefGoogle Scholar
  13. 13.
    D.H. Bailey, A.M. Frolov, J. Phys. B 35, 4287 (2002) ADSCrossRefGoogle Scholar
  14. 14.
    L.D. Landau, E.M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory, 3rd edn. (Pergamonn Press, Oxford, 1977) Google Scholar
  15. 15.
    A.M. Frolov, Phys. Rev. A 65, 024701 (2002) ADSCrossRefGoogle Scholar
  16. 16.
    CRC Handbook of Chemistry and Physics, 85th edn., edited by D.R. Lide (CRC Press, Boca Raton, 2004)Google Scholar
  17. 17.
    A.M. Frolov, Phys. Rev. A 59, 4479 (1999) CrossRefGoogle Scholar
  18. 18.
    V.B. Bel’jaev, S.S. Gerstein, B.N. Zakhariev, S.P. Lomnev, Zh. Eksp. Teor. Fiz. 37, 1652 (1959) [Sov. Phys. JETP 10, 1171 (1959)]Google Scholar
  19. 19.
    Ya.B. Zel’dovich, S.S. Gerstein, Usp. Fiz. 71, 581 (1960)Google Scholar
  20. 20.
    A. Halpern, Phys. Rev. Lett. 13, 660 (1964)ADSCrossRefGoogle Scholar
  21. 21.
    B.P. Carter, Phys. Rev. 141, 863 (1966) ADSCrossRefGoogle Scholar
  22. 22.
    B.P. Carter, Phys. Rev. 165, 139 (1968) ADSCrossRefGoogle Scholar
  23. 23.
    L.M. Delves, T. Kalotas, Aust. J. Phys. 21, 1 (1968)ADSGoogle Scholar
  24. 24.
    V.M. Bysrtitskii et al., Pis’ma Zh. Eksp. Teor. Fiz. 31, 249 (1980) [Sov. Phys. JETP Lett. 31, 228 (1980)]Google Scholar
  25. 25.
    V.M. Bystritski et al., Zh. Eksp. Teor. Fiz. 80, 1700 (1981) [Sov. Phys. JETP 53, 877 (1981)]Google Scholar
  26. 26.
    L.W. Alvarez et al., Phys. Rev. 105, 1127 (1957) ADSCrossRefGoogle Scholar
  27. 27.
    S.I. Vinitskii, V.S. Melezhik, L.I. Ponomarev, I.V. Puzynin, T.P. Puzynina, L.N. Somov, N.F. Truskova, Zh. Eksp. Teor. Fiz. 79, 698 (1980) [Sov. Phys. JETP 52, 353 (1980)]ADSGoogle Scholar
  28. 28.
    A.M. Frolov, V.D. Efros, Pis’ma v Zh. Eksp. Teor. Fiz. 39, 449 (1984) [Sov. Phys. JETP Lett. 39, 544 (1984)]Google Scholar
  29. 29.
    A.K. Bhatia, R.J. Drachman, Phys. Rev. A 30, 2138 (1984) ADSCrossRefGoogle Scholar
  30. 30.
    A.M. Frolov, V.D. Efros, J. Phys. B 18, L265 (1985) ADSCrossRefGoogle Scholar
  31. 31.
    A.M. Frolov, Yad. Fiz. 44, 1367 (1986) [Sov. J. Nucl. Phys. 44, 888 (1986)]Google Scholar
  32. 32.
    M. Kamimura, Phys. Rev. A 38, 621 (1988)ADSCrossRefGoogle Scholar
  33. 33.
    L.I. Men’shikov, L.N. Somov, Sov. Phys. Usp. 33, 616 (1990)ADSCrossRefGoogle Scholar
  34. 34.
    A.M. Frolov, H.H. Smith Jr., D.M. Bishop, Phys. Rev. A 49, 1686 (1994) ADSCrossRefGoogle Scholar
  35. 35.
    D.M. Bishop, A.M. Frolov, H.H. Smith Jr., Phys. Rev. A 51, 3636 (1995)ADSCrossRefGoogle Scholar
  36. 36.
    D.H. Bailey, ACM Trans. Math. Soft. 21, 379 (1995)MATHCrossRefGoogle Scholar
  37. 37.
    D.H. Bailey, Comput. Sci. Eng. 2, 24 (2000)CrossRefGoogle Scholar
  38. 38.
    S. Kilic, J.-P. Karr, L. Hilico, Phys. Rev. A 66, 22101 (2002) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Chemistry University of Western OntarioLondonCanada

Personalised recommendations