Advertisement

QED corrections to the electromagnetic Abraham force

Casimir momentum of the hydrogen atom?
  • B. A. van Tiggelen
  • S. Kawka
  • G. L. J. A. Rikken
Regular Article

Abstract

We develop a QED approach to find the contribution of the quantum vacuum to the electromagnetic Abraham force. Semi-classical theories predict diverging contributions from the quantum vacuum. We show that the divergencies disappear by Kramers-Bethe mass-renormalization. The finite remainder is compared to the relativistic corrections to the Abraham force. This work applies an earlier approach [S. Kawka, B.A. van Tiggelen, Europhys Lett. 89, 11002 (2010)]1, dedicated to the simpler case of a harmonic oscillator, to the Coulomb interaction, which is more realistic in a QED context.

Keywords

Atomic Physics 

References

  1. 1.
    S. Kawka, B.A. van Tiggelen, Europhys. Lett. 89, 11002 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    S. Kawka, B.A. van Tiggelen, Europhys. Lett. 98, 29904 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    J.D. Jackson, Classical Electrodynamics (John Wiley & Sons, New York, 1975)Google Scholar
  4. 4.
    D.F. Nelson, Phys. Rev. A 44, 3985 (1991)ADSCrossRefGoogle Scholar
  5. 5.
    I. Brevik, Phys. Rep. 52, 133 (1979)ADSCrossRefGoogle Scholar
  6. 6.
    M. Mansuripur, Opt. Commun. 283, 1997 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    M. Mansuripur, Phys. Rev. Lett. 108, 193901 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    S. Barnett, Phys. Rev. Lett. 104, 070401 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    A. Feigel, Phys. Rev. Lett. 92, 020404 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    B.A. van Tiggelen, G.L.J.A. Rikken, Phys. Rev. Lett. 93, 268903 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    G.B. Walker, G. Walker, Nature 263, 401 (1976)ADSCrossRefGoogle Scholar
  12. 12.
    G.B. Walker, G. Walker, Can. J. Phys. 55, 2121 (1977)ADSCrossRefGoogle Scholar
  13. 13.
    G.L.J.A. Rikken, B.A. van Tiggelen, Phys. Rev. Lett. 107, 170401 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    G.L.J.A. Rikken, B.A. van Tiggelen, Phys. Rev. Lett. 108, 230402 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    B.A. van Tiggelen, Eur. Phys. J. D 47, 261 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    O.J. Birkeland, I. Brevik, Phys. Rev. E 76, 066605 (2007)MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    J. Schwinger, Proc. Natl. Acad. Sci. USA 90, 958 (1993)MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    I. Brevik, V.N. Marachevsky, K.A. Milton, Phys. Rev. Lett. 82, 3948 (1999)ADSCrossRefGoogle Scholar
  19. 19.
    O. Dippel, P. Schmelcher, L.S. Cederbaum, Phys. Rev. A 49, 4415 (1994)ADSCrossRefGoogle Scholar
  20. 20.
    H.A. Bethe, Phys. Rev. 72, 339 (1947)ADSMATHCrossRefGoogle Scholar
  21. 21.
    P.W. Milonni, The Quantum Vacuum (Academic Press, San Diego, 1994)Google Scholar
  22. 22.
    M.T. Jaeckel, S. Reynaud, J. Phys. I 3, 1093 (1993)CrossRefGoogle Scholar
  23. 23.
    H.B.G. Casimir, D. Polder, Phys. Rev. 73, 360 (1948)ADSMATHCrossRefGoogle Scholar
  24. 24.
    A. Lagendijk, B.A. van Tiggelen, Phys. Rep. 270, 143 (1996)ADSCrossRefGoogle Scholar
  25. 25.
    C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Photons et Atomes (Éditions du CNRS, Paris, 1987), p. 174Google Scholar
  26. 26.
    R.P. Feymann, R.B. Leighton, M. Sands, The Feynman Lectures on Physics (Electromagnetism and Matter) (Addison Wesley, 1981)Google Scholar
  27. 27.
    L.D. Landau, E.M. Lifshitz, Quantum Mechanics (Non-relativistic Theory), Problem 1 (Pergamon Press Ltd., New York), Vol. 3, p. 38Google Scholar
  28. 28.
    L.D. Landau, E.M. Lifschitz, The Classical Theory of Fields (Pergamon, 1975), Vol. 2, Sect. 65Google Scholar
  29. 29.
    A. Matsumoto, Phys. Scr. 44, 154 (1991)ADSCrossRefGoogle Scholar
  30. 30.
    R. Loudon, The Quantum Theory of Light, 2nd edn. (Oxford University Press, 1984)Google Scholar
  31. 31.
    M.M. Bartlett, A.E. Power, J. Phys. A 2, 419 (1969)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • B. A. van Tiggelen
    • 1
  • S. Kawka
    • 1
    • 2
  • G. L. J. A. Rikken
    • 3
  1. 1.Université Grenoble 1/CNRSGrenobleFrance
  2. 2.Scuola Normale Superiore, Physics DepartmentPisaItaly
  3. 3.Laboratoire National des Champs Magnétiques Intenses, UPR3228 CNRS/INSA/UJF/UPSToulouse and GrenobleFrance

Personalised recommendations