Self assembly and chirality transfer in D-Alaninol on the Cu(100) surface

  • P. Gori
  • G. Contini
  • F. Ronci
  • S. Colonna
  • N. Zema
  • S. Turchini
  • D. Catone
  • A. Cricenti
  • T. Prosperi
  • M. Aschi
  • A. Palma
Regular Article
Part of the following topical collections:
  1. Topical issue: Atomic Cluster Collisions

Abstract

Chirality expression modifications occurring for a simple chiral amino-alcohol, d-Alaninol, adsorbed on Cu(100), when passing from low to high molecular coverage, are studied by means of scanning tunneling microscopy (STM) and theoretical modeling. At low coverage, d-Alaninol molecules organize in tetramers that are aligned to Cu(100) unit vectors whereas, increasing the molecular amount on the surface, the interplay of supramolecularity and chirality induces a rotation of the tetramers of 14° with respect to the substrate lattice vectors. This behaviour is analyzed by means of a theoretical approach that combines classical molecular dynamics (MD) and density functional theory (DFT). The force field adopted in MD calculations is parametrized by fitting it to results obtained at DFT level on a single adsorbed alaninol molecule on the Cu(100) surface. The configurations of isolated and surrounded tetramers most sampled by MD are extracted by Principal Component Analysis. Further DFT relaxation with semiempirical dispersion correction (DFT-D) and considering also the possible dehydrogenation of both functional groups of alaninol, give rise to a few structures that are discussed in terms of their energetics and by comparing the resulting simulated STM images with the experimental ones.

Keywords

Topical issue: Atomic Cluster Collisions. Guest editors: Andrey V. Solov’yov and Andrey V. Korol 

References

  1. 1.
    T. Mallat, E. Orglmeister, A. Baiker, Chem. Rev. 107, 4863 (2007)CrossRefGoogle Scholar
  2. 2.
    F. Zaera, J. Phys. Chem. C 112, 16196 (2008)CrossRefGoogle Scholar
  3. 3.
    A. Kühnle, Curr. Opin. Colloid Interface Sci. 14, 157 (2009)CrossRefGoogle Scholar
  4. 4.
    J.A.A.W. Elemans, S. Lei, S. De Feyter, Angew. Chem. Int. Ed. 48, 7298 (2009)CrossRefGoogle Scholar
  5. 5.
    A.J. Gellman, ACS Nano 4, 5 (2010)CrossRefGoogle Scholar
  6. 6.
    V. Humblot, S.M. Barlow, R. Raval, Prog. Surf. Sci. 76, 1 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    S.M. Barlow, R. Raval, Surf. Sci. Rep. 50, 201 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    R. Fasel, K.-H. Ernst, M. Parschau, Angew. Chem. Int. Ed. 42, 5178 (2003)CrossRefGoogle Scholar
  9. 9.
    K.-H. Ernst, Top. Curr. Chem. 265, 209 (2006)CrossRefGoogle Scholar
  10. 10.
    R. Raval, Chem. Soc. Rev. 38, 707 (2009)CrossRefGoogle Scholar
  11. 11.
    M. Lingenfelder, G. Tomba, G. Costantini, L.C. Ciacchi, A. De Vita, K. Kern, Angew. Chem. Int. Ed. 46, 4492 (2007)CrossRefGoogle Scholar
  12. 12.
    G. Tomba, M. Lingenfelder, G. Costantini, K. Kern, F. Klappenberger, J.V. Barth, L.C. Ciacchi, A. De Vita, J. Phys. Chem. A 111, 12740 (2007)CrossRefGoogle Scholar
  13. 13.
    P. Gori, G. Contini, T. Prosperi, F. Ronci, S. Colonna, N. Zema, S. Turchini, D. Catone, A. Cricenti, A. Palma, Superlatt. Microstruct. 46, 52 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    S. Irrera, G. Contini, N. Zema, S. Turchini, J. Fujii, S. Sanna, T. Prosperi, J. Phys. Chem. B 111, 7478 (2007)CrossRefGoogle Scholar
  15. 15.
    P. Gori, G. Contini, T. Prosperi, D. Catone, S. Turchini, N. Zema, A. Palma, J. Phys. Chem. B 112, 3963 (2008)CrossRefGoogle Scholar
  16. 16.
    A. Amadei, A.B.M. Linssen, H.J.C. Berendsen, Proteins 17, 412 (1993)CrossRefGoogle Scholar
  17. 17.
    K. Glazebrook, A.R. Offer, K. Deeley, Astrophys. J. 492, 98 (1998)ADSCrossRefGoogle Scholar
  18. 18.
    S. Hayward, N. Go, Annu. Rev. Phys. Chem. 46, 223 (1995)ADSCrossRefGoogle Scholar
  19. 19.
    V. Spiwok, P. Lipovova, B. Kralova, J. Phys. Chem. B 111, 3073 (2007)CrossRefGoogle Scholar
  20. 20.
    G.A. Tribello, M. Ceriotti, M. Parrinello, Proc. Natl. Acad. Sci. USA 107, 17509 (2010)CrossRefGoogle Scholar
  21. 21.
    S. Irrera, G. Contini, N. Zema, S. Turchini, S. Sanna, P. Moras, C. Crotti, T. Prosperi, Surf. Sci. 601, 2562 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    J. Tersoff, D.R. Hamann, Phys. Rev. B 31, 805 (1985)ADSCrossRefGoogle Scholar
  23. 23.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  24. 24.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997)ADSCrossRefGoogle Scholar
  25. 25.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 80, 891 (1998)ADSCrossRefGoogle Scholar
  26. 26.
    P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, J. Phys.: Condens. Matter 21, 395502 (2009)CrossRefGoogle Scholar
  27. 27.
    H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    S. Grimme, J. Comp. Chem. 25, 1463 (2004)CrossRefGoogle Scholar
  29. 29.
    S. Grimme, J. Comp. Chem. 27, 1787 (2006)CrossRefGoogle Scholar
  30. 30.
    D. van der Spoel, H.J.C. Berendsen, A.R. van Buuren, E. Apol, A.L.T.M. Sijbers, GROMACS User Manual (University of Groningen, Groningen, The Netherlands, 1995)Google Scholar
  31. 31.
    H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. Dinola, J.R. Haak, J. Chem. Phys. 81, 3684 (1984)ADSCrossRefGoogle Scholar
  32. 32.
    G. Contini, P. Gori, F. Ronci, N. Zema, S. Colonna, M. Aschi, A. Palma, S. Turchini, D. Catone, A. Cricenti, T. Prosperi, Langmuir 27, 7410 (2010)CrossRefGoogle Scholar
  33. 33.
    P. Gori, G. Contini, T. Prosperi, N. Zema, F. Ronci, S. Colonna, A. Cricenti, S. Turchini, D. Catone, M. Aschi, A. Palma, Phys. Stat. Sol. C 7, 2616 (2010)CrossRefGoogle Scholar
  34. 34.
    V. Barone, M. Biczysko, M. Pavone, Chem. Phys. 346, 247 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    S. Irrera, D. Costa, J. Chem. Phys. 128, 114709 (2008)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • P. Gori
    • 1
    • 2
  • G. Contini
    • 1
    • 2
  • F. Ronci
    • 1
  • S. Colonna
    • 1
  • N. Zema
    • 1
  • S. Turchini
    • 1
  • D. Catone
    • 1
  • A. Cricenti
    • 1
  • T. Prosperi
    • 1
  • M. Aschi
    • 3
  • A. Palma
    • 4
  1. 1.Istituto di Struttura della MateriaCNRRomaItaly
  2. 2.Centro interdipartimentale Nanoscienze & Nanotecnologie & Strumentazione (NAST)University of Rome “Tor Vergata”RomaItaly
  3. 3.Dipartimento di Chimica, Ingegneria Chimica e MaterialiUniversità di L’AquilaCoppitoItaly
  4. 4.Istituto per lo Studio dei Materiali NanostrutturatiCNRMonterotondo S. (RM)Italy

Personalised recommendations