Structural stability and electronic properties of small gold clusters induced by 3p electron atoms

Regular Article


The geometries and electronic properties of gold clusters doped with atoms containing 3p valence electrons (MAu n ; M = Al, Si, P, S, Cl; n = 2−8) have been systematically investigated using density functional theory (DFT) at the PBE/LANL2DZ level. A number of low-energy isomers are identified for neutral MAu n clusters. It is found that doping with different 3p impurity atoms can drastically influence the geometrical structures, relative stabilities, electronic properties, and growth-pattern behaviors of gold clusters, which is very different from the case of 3d transition-metal impurity doped Au n clusters. Partially filled 3p electron impurities can stabilize Au clusters. In particular, SiAu4 cluster with T d symmetry have been found to have highly stable geometries and electronic structures with binding energies of 2.43 eV per atom (0.96 eV higher than pristine Au5 clusters), large HOMO-LUMO gaps (2.17 eV), and vertical ionization potentials of 8.68 eV. Using scalar relativistic molecular dynamics at T = 300 K, we show that the T d symmetry structure of SiAu4 is stable. The frontier molecular orbitals (HOMO and LUMO) and the partial densities of states (PDOS) show that strong hybridization occurs between the atomic orbitals of Si and Au atoms, resulting in strong Si-Au bonding. In addition, the vertical ionization potential, the vertical electron affinity, and charge transfers of MAu n clusters have also been analyzed. Our results are in good agreement with available experimental data.


Clusters and Nanostructures 


  1. 1.
    M. Haruta, Catal. Today 36, 153 (1997)CrossRefGoogle Scholar
  2. 2.
    P. Schwerdtfeger, Angew. Chem. Int. Ed. 42, 1892 (2003)CrossRefGoogle Scholar
  3. 3.
    M.C. Daniel, D. Astruc, Chem. Rev. 104, 293 (2004)CrossRefGoogle Scholar
  4. 4.
    P. Pyykkö, Nat. Nanotechnol. 2, 273 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    K.P. Huber, G. Herzberg, Constants of Diatomic Molec-ules (Van Nostrand Reinhold, New York, 1979)Google Scholar
  6. 6.
    B. Simard, P.A. Hackett, J. Mol. Spectrosc. 142, 310 (1990)ADSCrossRefGoogle Scholar
  7. 7.
    J. Ho, K. Ervin, W. Lineberger, J. Chem. Phys. 93, 6987 (1990)ADSCrossRefGoogle Scholar
  8. 8.
    K. Taylor, C. Pettitte-Hall, O. Cheshnovsky, R. Smalley, J. Chem. Phys. 96, 3319 (1992)ADSCrossRefGoogle Scholar
  9. 9.
    C. Jackschath, I. Rabin, W. Schulze, Ber. Bunsenges. Phys. Chem. 96, 1200 (1992)CrossRefGoogle Scholar
  10. 10.
    R.N. Barnett, C.I. Cleveland, H. Häkkinen, W.D. Luedtke, C. Yamouleas, U. Landsman, Eur. Phys. J. D 9, 95 (1999)ADSCrossRefGoogle Scholar
  11. 11.
    H. Häkkinen, B. Yoon, U. Landman, X. Li, H.J. Zhai, L.S. Wang, J. Phys. Chem. A 107, 6168 (2003)CrossRefGoogle Scholar
  12. 12.
    Y. Gao, W. Huang, J. Woodford, L.S. Wang, X.C. Zeng, J. Am. Chem. Soc. 131, 9484 (2009)CrossRefGoogle Scholar
  13. 13.
    K.A. Gingerich, G.D. Blue, J. Chem. Phys. 59, 185 (1973)ADSCrossRefGoogle Scholar
  14. 14.
    T.G. Schaaff, W.G. Cullen, P.N. First, I. Vezmar, R.L. Whetten, W.G. Cullen, P.N. First, C. Gutieérez-Wing, J. Ascensio, M.J. Jose-Yacamaá, J. Phys. Chem. 101, 7885 (1997)CrossRefGoogle Scholar
  15. 15.
    K. Koga, H. Takeo, T. Ikeda, K.I. Ohshima, Phys. Rev. B 57, 4053 (1998)ADSCrossRefGoogle Scholar
  16. 16.
    C.L. Cleveland, U. Landman, T.G. Schaaff, M.N. Shafigullin, P.W. Stephens, R.L. Whetten, Phys. Rev. Lett. 79, 1873 (1997)ADSCrossRefGoogle Scholar
  17. 17.
    B. Palpant, B. Prevel, J. Lerme, E. Cottancin, M. Pellarin, M. Treilleux, A. Perez, J.L. Vialle, M. Broyer, Phys. Rev. B 57, 1963 (1998)ADSCrossRefGoogle Scholar
  18. 18.
    P. Gruene, D.M. Rayner, B. Redlich, A.F.G. van der Meer, J.T. Lyon, G. Meijer, A. Fielicke, Science 321, 674 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    D.W. Liao, K. Balasubramanian, J. Chem. Phys. 97, 2548 (1992)ADSCrossRefGoogle Scholar
  20. 20.
    O.D. Häberlen, H. Schmidbauer, N. Rösch, J. Am. Chem. Soc. 116, 8241 (1994)CrossRefGoogle Scholar
  21. 21.
    K. Michaelian, N. Rendon, I.L. Garzón, Phys. Rev. B 60, 2000 (1999)ADSCrossRefGoogle Scholar
  22. 22.
    E.M. Fernández, J.M. Soler, L.C. Balbás, Phys. Rev. B 73, 235433 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    B.H. Hess, U. Kaldor, J. Phys. Chem. 112, 1809 (2000)CrossRefGoogle Scholar
  24. 24.
    H. Grönbeck, W. Andreoni, Chem. Phys. 262, 1 (2000)CrossRefGoogle Scholar
  25. 25.
    M.A. Omary, M.A. Rawashdeh-Omary, C.C. Chusuei, J.P. Fackler, P.S. Bagus, J. Chem. Phys. 114, 10695 (2001)ADSCrossRefGoogle Scholar
  26. 26.
    F. Furche, R. Ahlrichs, P. Weiss, C. Jacob, S. Gib, T. Bierweiler, M. Kappes, J. Chem. Phys. 117, 6982 (2002)ADSCrossRefGoogle Scholar
  27. 27.
    Z. Zhang, A. Berg, H. Levanon, R. Fessenden, W.D. Meisel, J. Am. Chem. Soc. 125, 7959 (2003)CrossRefGoogle Scholar
  28. 28.
    J. Zheng, J.T. Petty, R.M. Dickson, J. Am. Chem. Soc. 125, 7780 (2003)CrossRefGoogle Scholar
  29. 29.
    J. Li, X. Li, H.J. Zhai, L.S. Wang, Science 299, 864 (2003)ADSCrossRefGoogle Scholar
  30. 30.
    M.S. Chen, D.W. Goodman, Science 306, 252 (2004)ADSCrossRefGoogle Scholar
  31. 31.
    J. Wang, G. Wan, J. Zhao, Phys. Rev. B 66, 035418 (2002)ADSCrossRefGoogle Scholar
  32. 32.
    J. Zhao, J. Yang, J.G. Hou, Phys. Rev. B 67, 085404 (2003)ADSCrossRefGoogle Scholar
  33. 33.
    M. Niemietz, P. Gerhardt, G. Ganteför, Y.D. Kim, Chem. Phys. Lett. 380, 99 (2003)ADSCrossRefGoogle Scholar
  34. 34.
    K. Sugawara, F. Sobott, A.B. Vakhtin, J. Chem. Phys. 118, 7808 (2003)ADSCrossRefGoogle Scholar
  35. 35.
    Y.D. Kim, M. Fischer, G. Ganteför, Chem. Phys. Lett. 377, 170 (2003)ADSCrossRefGoogle Scholar
  36. 36.
    R.M. Olson, S. Varganov, M.S. Gordon, H. Metiu, S. Chretien, P. Piecuch, K. Kowalski, S.A. Kucharski, M. Musial, J. Am. Chem. Soc. 127, 1049 (2005)CrossRefGoogle Scholar
  37. 37.
    E.M. Fernández, J.M. Soler, I.L. Garzón, L.C. Balbás, Phys. Rev. B 70, 165403 (2004)ADSCrossRefGoogle Scholar
  38. 38.
    S. Bulusu, X. Li, L.S. Wang, X.C. Zeng, Proc. Natl. Acad. Sci. USA 103, 8326 (2006)ADSCrossRefGoogle Scholar
  39. 39.
    A. Lechtken, D. Schooss, J.R. Stairs, M.N. Blom, F. Furche, N. Morgner, O. Kostko, B. Von Issendorf, M.M. Kappes, Angew. Chem. Int. Ed. 46, 2944 (2007)CrossRefGoogle Scholar
  40. 40.
    H. Häkkinen, U. Landman, Phys. Rev. B 62, R2287 (2000)ADSCrossRefGoogle Scholar
  41. 41.
    S. Gilb, P. Weis, F. Furche, R. Ahlrichs, M. Kappes, J. Chem. Phys. 116, 4094 (2002)ADSCrossRefGoogle Scholar
  42. 42.
    J.C. Idrobo, W. Walkosz, S.F. Yip, S. Öğüt, J.L. Wang, J. Jellinek, Phys. Rev. B 76, 205422 (2007)ADSCrossRefGoogle Scholar
  43. 43.
    V. Bonačić-Koutecký, J. Burda, R. Mitric, M. Ge, J. Chem. Phys. 117, 3120 (2002)ADSCrossRefGoogle Scholar
  44. 44.
    L. Ferrighi, B. Hammer, G.K.H. Madsen, J. Am. Chem. Soc. 131, 10605 (2009)CrossRefGoogle Scholar
  45. 45.
    X.B. Li, H.Y. Wang, X.D. Yang, Z.H. Zhu, Y.J. Tang, J. Chem. Phys. 126, 084505 (2007)ADSCrossRefGoogle Scholar
  46. 46.
    H. Häkkinen, M. Moseler, U. Landman, Phys. Rev. Lett. 89, 033401 (2002)ADSCrossRefGoogle Scholar
  47. 47.
    W. Huang, L.S. Wang, Phys. Rev. Lett. 102, 153401 (2009)ADSCrossRefGoogle Scholar
  48. 48.
    B. Assadollahzadeh, P. Schwerdtfeger, J. Chem. Phys. 131, 064306 (2009)ADSCrossRefGoogle Scholar
  49. 49.
    H.S. De, S. Krishnamurty, D. Mishra, S. Pal, J. Phys. Chem. C 115, 17278 (2011)CrossRefGoogle Scholar
  50. 50.
    M.X. Chen, X.H. Yan, J. Chem. Phys. 128, 174305 (2008)ADSCrossRefGoogle Scholar
  51. 51.
    W. Fa, J.M. Dong, J. Chem. Phys. 128, 144307 (2008)ADSCrossRefGoogle Scholar
  52. 52.
    H. Tanaka, S. Neukermans, E. Janssens, R.E. Silverans, P. Lievens, J. Am. Chem. Soc. 125, 2862 (2003)CrossRefGoogle Scholar
  53. 53.
    E. Janssens, H. Tanaka, S. Neukermans, R.E. Silverans, P. Lievens, New J. Phys. 5, 46 (2003)ADSCrossRefGoogle Scholar
  54. 54.
    M. Zhang, S. Chen, Q.M. Deng, L.M. He, L.N. Zhao, Y.H. Luo, Eur. Phys. J. D 58, 117 (2010)ADSCrossRefGoogle Scholar
  55. 55.
    Q. Sun, X.G. Gong, Q.Q. Zheng, D.Y. Sun, G.H. Wang, Phys. Rev. B 54, 10896 (1996)ADSCrossRefGoogle Scholar
  56. 56.
    Q. Sun, Q. Wang, J.Z. Yu, Z.Q. Li, J.T. Wang, Y. Kawazoe, J. Phys. I 7, 1233 (1997)CrossRefGoogle Scholar
  57. 57.
    J. Van De Walle, R.J. Tarento, P. Joyes, Surf. Rev. Lett. 6, 307 (1999)CrossRefGoogle Scholar
  58. 58.
    W. Bouwen, F. Vanhoutte, F. Despa, S. Bouckaert, S. Neukermans, L.T. Kuhn, H. Weidele, P. Lievens, R.E. Silverans, Chem. Phys. Lett. 314, 227 (1999)ADSCrossRefGoogle Scholar
  59. 59.
    M. Heinebrodt, N. Malinowski, F. Tast, W. Branz, I.M.L. Billas, T.P. Martin, J. Chem. Phys. 110, 9915 (1999)ADSCrossRefGoogle Scholar
  60. 60.
    K. Koyasu, M. Mitsui, A. Nakajima, K. Kaya, Chem. Phys. Lett. 358, 224 (2002)ADSCrossRefGoogle Scholar
  61. 61.
    X. Li, B. Kiran, J. Li, H.J. Zhai, L.S. Wang, Angew. Chem. 114, 4980 (2002)CrossRefGoogle Scholar
  62. 62.
    H. Häkkinen, S. Abbet, A. Sanchez, U. Heiz, U. Landman, Angew. Chem. Int. Ed. 42, 1297 (2003)CrossRefGoogle Scholar
  63. 63.
    L.M. Wang, R. Pal, W. Huang, X. Li, X.C. Zeng, L.S. Wang, J. Chem. Phys. 132, 114306 (2010)ADSCrossRefGoogle Scholar
  64. 64.
    J. David, D. Guerra, C.Z. Hadad, A. Restrepo, J. Phys. Chem. A 114, 10726 (2010)CrossRefGoogle Scholar
  65. 65.
    T.K. Ghanty, A. Banerjee, A. Chakrabarti, J. Phys. Chem. C 114, 20 (2010)CrossRefGoogle Scholar
  66. 66.
    W.Q. Tian, M. Ge, F. Gu, T. Yamada, Y. Aoki, J. Phys. Chem. A 110, 6285 (2006)CrossRefGoogle Scholar
  67. 67.
    W.Q. Tian, M. Ge, B.R. Sahu, D. Wang, T. Yamada, S. Mashiko, J. Phys. Chem. A 108, 3806 (2004)CrossRefGoogle Scholar
  68. 68.
    W.Q. Tian, M. Ge, F. Gu, Y. Aoki, J. Phys. Chem. A 109, 9860 (2005)CrossRefGoogle Scholar
  69. 69.
    A. Yang, W. Fa, J.M. Dong, J. Phys. Chem. A 114, 4301 (2010)Google Scholar
  70. 70.
    P. Pyykkö, N. Runeberg, Angew. Chem. Int. Ed. 41, 2174 (2002)CrossRefGoogle Scholar
  71. 71.
    X. Li, B. Kiran, J. Li, H.J. Zhai, L.S. Wang, Angew. Chem. Int. Ed. 41, 4786 (2002)CrossRefGoogle Scholar
  72. 72.
    S. Neukermans, E. Janssens, H. Tanaka, R.E. Silverans, P. Lievens, Phys. Rev. Lett. 90, 033401 (2003)ADSCrossRefGoogle Scholar
  73. 73.
    H. Tanaka, S. Neukermans, E. Janssens, R.E. Silverans, P. Lievens, J. Chem. Phys. 119, 7115 (2003)ADSCrossRefGoogle Scholar
  74. 74.
    E. Janssens, H. Tanaka, S. Neukermans, R.E. Silverans, P. Lievens, Phys. Rev. B 69, 085402 (2004)ADSCrossRefGoogle Scholar
  75. 75.
    M.B. Torres, E.M. Fernández, L.C. Balbás, Phys. Rev. B 71, 155412 (2005)ADSCrossRefGoogle Scholar
  76. 76.
    X. Li, B. Kiran, L.F. Cui, L.S. Wang, Phys. Rev. Lett. 95, 253401 (2005)ADSCrossRefGoogle Scholar
  77. 77.
    M. Zhang, L.M. He, L.X. Zhao, X.J. Feng, Y.H. Luo, J. Phys. Chem. C 113, 6491 (2009)CrossRefGoogle Scholar
  78. 78.
    T. Höltzl, P. Lievens, T. Veszprémi, M.T. Nguyen, J. Phys. Chem. C 113, 21016 (2009)CrossRefGoogle Scholar
  79. 79.
    P.V. Nhat, M.T. Nguyen, Phys. Chem. Chem. Phys. 13, 16254 (2011)CrossRefGoogle Scholar
  80. 80.
    V. Kumar, Phys. Rev. B 79, 085423 (2009)ADSCrossRefGoogle Scholar
  81. 81.
    P. Pyykkö, Y. Zhao, Chem. Phys. Lett. 177, 103 (1991)ADSCrossRefGoogle Scholar
  82. 82.
    R. Pal, S. Bulusu, X.C. Zeng, J. Comput. Meth. Sci. Eng. 7, 185 (2007)Google Scholar
  83. 83.
    Y.L. Cao, C. van der Linde, R.F. Hoeckendorf, M.K. Beyer, J. Chem. Phys. 132, 224307 (2010)ADSCrossRefGoogle Scholar
  84. 84.
    L.M. Wang, S. Bulusu, W. Huang, R. Pal, L.S. Wang, X.C. Zeng, J. Am. Chem. Soc. 129, 15136 (2007)CrossRefGoogle Scholar
  85. 85.
    M. Abe, T. Nakajima, K. Hirao, J. Chem. Phys. 117, 7960 (2002)ADSCrossRefGoogle Scholar
  86. 86.
    M. Walter, H. Häkkinen, Phys. Chem. Chem. Phys. 8, 5407 (2006)CrossRefGoogle Scholar
  87. 87.
    Q. Sun, Q. Wang, G. Chen, P. Jena, J. Chem. Phys. 127, 214706 (2007)ADSCrossRefGoogle Scholar
  88. 88.
    B. Kiran, X. Li, H.J. Zhai, L.F. Cui, L.S. Wang, Angew. Chem. Int. Ed. 43, 2125 (2004)CrossRefGoogle Scholar
  89. 89.
    B. Kiran, X. Li, H.J. Zhai, L.S. Wang, J. Chem. Phys. 125, 133204 (2006)ADSCrossRefGoogle Scholar
  90. 90.
    X. Li, B. Kiran, L.S. Wang, J. Phys. Chem. A 109, 4366 (2005)CrossRefGoogle Scholar
  91. 91.
    C. Majumder, Phys. Rev. B 75, 235409 (2007)ADSCrossRefGoogle Scholar
  92. 92.
    C. Majumder, A.K. Kandalam, P. Jena, Phys. Rev. B 74, 205437 (2006)ADSCrossRefGoogle Scholar
  93. 93.
    R. Pal, L.M. Wang, W. Huang, L.S. Wang, X.C. Zeng, J. Am. Chem. Soc. 131, 3396 (2009)CrossRefGoogle Scholar
  94. 94.
    W.J. Stevens, H. Basch, M. Krauss, J. Chem. Phys. 81, 6026 (1984)ADSCrossRefGoogle Scholar
  95. 95.
    P.J. Hay W.R. Wadt, J. Chem. Phys. 82, 299 (1985)ADSCrossRefGoogle Scholar
  96. 96.
    M.J. Frisch, G.M. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B.G. Johnson, W. Chen, M.W. Wang, C. Gonzales, J.A. Pople, Gaussian 03 (revision C.02) (Gaussian Inc., Pittsburgh, PA, 2003)Google Scholar
  97. 97.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  98. 98.
    J.P.K. Doye, D.J. Wales, J. Phys. Chem. A 101, 5111 (1997)CrossRefGoogle Scholar
  99. 99.
    D.J. Wales, H.A. Scheraga, Science 285, 1368 (1999)CrossRefGoogle Scholar
  100. 100.
    P. Schwerdtfeger, M. Dolg, W.H.E. Schwarz, G.A. Bowmake, P.D.W. Boyd, J. Chem. Phys. 91, 1762 (1989)ADSCrossRefGoogle Scholar
  101. 101.
    P. Schwerdtfeger, M. Dolg, Phys. Rev. A 43, 1644 (1991)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of PhysicsEast China University of Science and TechnologyShanghaiP.R. China

Personalised recommendations