Efficiency of quantum volume hologram

Regular Article
Part of the following topical collections:
  1. Topical issue: High Dimensional Quantum Entanglement


We discuss storage and retrieval efficiency of parallel spatially multimode quantum memory for light – quantum volume hologram. The introduced in [D.V. Vasyliev, I.V. Sokolov, E.S. Polzik, Phys. Rev. A 81, 020302(R) (2010)] scheme is based on the counter-propagating (non-collinear in general case) quantum signal wave and strong classical reference wave in presence of the Raman-type off-resonant interaction with atomic spins rotating in the magnetic field. By the forward-propagating retrieval the quantum volume hologram is less sensitive to diffraction [D.V. Vasyliev, I.V. Sokolov, E.S. Polzik, Phys. Rev. A 81, 020302(R) (2010)] and therefore is capable of achieving high density of storage of spatial modes. We propose to use for the forward-propagating retrieval the signal temporal eigenmodes of the whole write-in and readout memory cycle. As compared to the approach when there are used the eigenmodes optimal only for the write-in stage of the memory, our proposal allows for better efficiencies for given physical parameters of the scheme, and, hence, for higher quantum capacity of parallel quantum memory. We also demonstrate that for the backward-propagating retrieval of quantum volume hologram the collective spin wave momentum inversion is needed, which is achieved by means of the π-pulse of stimulated Raman scattering of counter-propagating classical waves.


Topical issue: High Dimensional Quantum Entanglement. Guest editors: Sonja Franke-Arnold, Alessandra Gatti and Nicolas Treps 


  1. 1.
    D.V. Vasyliev, I.V. Sokolov, E.S. Polzik, Phys. Rev. A 81, 020302(R) (2010) ADSGoogle Scholar
  2. 2.
    K. Hammerer, A.S. Sørensen, E.S. Polzik, Rev. Mod. Phys. 82, 1041 (2010) ADSCrossRefGoogle Scholar
  3. 3.
    A.I. Lvovsky, B.C. Sanders, W. Tittel, Nat. Photon. 3, 706 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    R.M. Camacho, C.J. Broadbent, I. Ali-Khan, J.C. Howell, Phys. Rev. Lett. 98, 043902 (2007) ADSCrossRefGoogle Scholar
  5. 5.
    M. Shuker, O. Firstenberg, R. Pugatch, A. Ron, N. Davidson, Phys. Rev. Lett. 100, 223601 (2008) ADSCrossRefGoogle Scholar
  6. 6.
    P.K. Vudyasetu, R.M. Camacho, J.C. Howell, Phys. Rev. Lett. 100, 123903 (2008) ADSCrossRefGoogle Scholar
  7. 7.
    D.V. Vasilyev, I.V. Sokolov, E.S. Polzik, Phys. Rev. A 77, 020302(R) (2008) ADSCrossRefGoogle Scholar
  8. 8.
    D.V. Vasilyev, I.V. Sokolov, E.S. Polzik, Opt. Spectrosc. 106, 875 (2009) ADSCrossRefGoogle Scholar
  9. 9.
    D.V. Vasyliev, I.V. Sokolov, Phys. Rev. A 83, 053851 (2011) ADSCrossRefGoogle Scholar
  10. 10.
    T. Golubeva, Yu. Golubev, O. Mishina, A. Bramati, J. Laurat, E. Giacobino, Phys. Rev. A 83, 053810 (2011) ADSCrossRefGoogle Scholar
  11. 11.
    E. Zeuthen, A. Grodecka-Grad, A.S. Sørensen, Phys. Rev. A 84, 043838 (2011) ADSCrossRefGoogle Scholar
  12. 12.
    K. Surmacz, J. Nunn, K. Reim, K.C. Lee, V.O. Lorenz, B. Sussman, I.A. Walmsley, D. Jaksch, Phys. Rev. A 78, 033806 (2008) ADSCrossRefGoogle Scholar
  13. 13.
    G. Hetet, J.J. Longdell, M.J. Sellars, P.K. Lam, B.C. Buchler, Phys. Rev. 101, 203601 (2008) ADSGoogle Scholar
  14. 14.
    Yu.N. Denisyuk, Dokl. Akad. Nauk SSSR 144, 1275 (1962) [Sov. Phys. Doklady 7, 543 (1962)]Google Scholar
  15. 15.
    M.I. Kolobov, Rev. Mod. Phys. 71, 1539 (1999) ADSCrossRefGoogle Scholar
  16. 16.
    J. Nunn, I.A. Walsmley, M.G. Raymer, K. Surmacz, F.C. Waldermann, Z. Wang, D. Jaksch, Phys. Rev. A 75, 011401(R) (2007) ADSCrossRefGoogle Scholar
  17. 17.
    A.V. Gorshkov, A. André, M.D. Lukin, A.S. Sørensen, Phys. Rev. A 76, 033805 (2007) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institute for Theoretical Physics and Institute for Gravitational PhysicsLeibniz Universität HannoverHannoverGermany
  2. 2.Faculty of PhysicsSt. Petersburg State UniversityPetrodvorets, St. PetersburgRussia

Personalised recommendations