Advertisement

Chaos and noise control by current modulation in semiconductor lasers subject to optical feedback

  • M. Ahmed
  • N. Z. El-Sayed
  • H. Ibrahim
Regular Article

Abstract

This paper introduces comprehensive large-signal analyses of modulation dynamics and noise of a chaotic semiconductor laser. The chaos is induced by operating the laser under optical feedback (OFB). Control of the chaotic dynamics and possibility of suppressing the associated noise by sinusoidal modulation are investigated. The studies are based on numerical solutions of a time-delay rate equation model. The deterministic modulation dynamics of the laser are classified into seven regular and irregular dynamic types. Variations of chaotic dynamics and noise with sinusoidal modulation are examined in both time and frequency domains over wide ranges of the modulation depth and frequency. The results showed that chaotic dynamics can be converted into five distinct dynamic types; namely, continuous periodic signal (CPS), continuous periodic signal with relaxation oscillations (CPSRO), periodic pulse (PP), periodic pulse with relaxation oscillations (PPRO) and periodic pulse with period doubling (PPPD). The relative intensity noise (RIN) of these types is characterized when the modulation frequencies are much lower, comparable to, and higher than the resonance frequency. Suppression of RIN to a level 8 dB/Hz higher than the quantum limit was predicted under the CPS type when the modulation frequency is 0.9 times the resonance frequency and the modulation depth is 0.14.

Keywords

Optical Phenomena and Photonics 

References

  1. 1.
    T. Wolf, M.C. Amann, H. Albrecht H, Eur. Trans. Telecommun. 4, 599 (1993)CrossRefGoogle Scholar
  2. 2.
    J.H. Liu, Z.S. Shao, X.L. Meng, H.J. Zhang, L. Zhu, M.H. Jiang, Opt. Commun. 164, 199 (1999) ADSCrossRefGoogle Scholar
  3. 3.
    S. Eriksson, A.M. Lindberg, B. Stahlberg, Opt. Laser Technol. 31, 473 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    S. Shinada, F. Koyama, K. Suzuki, K. Goto, K. Iga, Opt. Rev. 6, 486 (1999)CrossRefGoogle Scholar
  5. 5.
    M. Ahmed, Int. J. Numer. Model. 17, 147 (2004)MATHCrossRefGoogle Scholar
  6. 6.
    M. Ahmed, M. Yamada, M. Saito, IEEE J. Quantum Electron. 37, 1600 (2001) ADSCrossRefGoogle Scholar
  7. 7.
    J.S. Lawrence, Ph.D. thesis, University of Macquarie, Sydney, 2000Google Scholar
  8. 8.
    S. Kobayashi, T. Kimura, IEEE J. Quantum Electron. 16, 915 (1980)ADSCrossRefGoogle Scholar
  9. 9.
    K. Petermann, IEEE J. Quantum Electron. 1, 480 (1995)CrossRefGoogle Scholar
  10. 10.
    L. Goldberg, H.F. Taylor, A. Dandridge, J.F. Weller, R.O. Miles, IEEE J. Quantum Electron. 18, 555 (1982)ADSCrossRefGoogle Scholar
  11. 11.
    M.W. Fleming, A. Mooradian, IEEE J. Quantum Electron. 17, 44 (1981)ADSCrossRefGoogle Scholar
  12. 12.
    F. Favre, D. Guen, J.C. Simon, IEEE J. Quantum Electron. 18, 1712 (1982) ADSCrossRefGoogle Scholar
  13. 13.
    G.P. Agrawal, IEEE J. Quantum Electron. 20, 468 (1984)ADSCrossRefGoogle Scholar
  14. 14.
    M. Ahmed, M. Yamada, J. Appl. Phys. 95, 7573 (2004) ADSCrossRefGoogle Scholar
  15. 15.
    R. Lang, K. Kobayashi, IEEE J. Quantum Electron. 16, 347 (1980)ADSCrossRefGoogle Scholar
  16. 16.
    Y.C. Chen, Appl. Phys. Lett. 44, 10 (1984)ADSCrossRefGoogle Scholar
  17. 17.
    H. Sato, T. Fujita, K. Fujito, IEEE J. Quantum Electron. 21, 46 (1985)ADSCrossRefGoogle Scholar
  18. 18.
    A.T. Ryan, G.P. Agrawal, R. Gray, C. Gage, IEEE J. Quantum Electron. 30, 668 (1994)ADSCrossRefGoogle Scholar
  19. 19.
    N. Kikuchi, Y. Liu, J. Ohtsubo, IEEE J. Quantum Electron. 33, 56 (1997)ADSCrossRefGoogle Scholar
  20. 20.
    M. Yamada, T. Higashi, IEEE J. Quantum Electron. 27, 380 (1991)ADSCrossRefGoogle Scholar
  21. 21.
    R. George, Opt. Eng. 32, 739 (1993)ADSCrossRefGoogle Scholar
  22. 22.
    J.C. Yi, Phys. Stat. Sol. C 4, 1617 (2007)CrossRefGoogle Scholar
  23. 23.
    R. Lima, M. Pettini, Phys. Rev. A 41, 726 (1990)MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    Y. Braiman, I. Goldhirsch, Phys. Rev. Lett. 66, 2545 (1991) MathSciNetADSMATHCrossRefGoogle Scholar
  25. 25.
    A. Azevedo, S.M. Rezende, Phys. Rev. Lett. 66, 1342 (1991) ADSCrossRefGoogle Scholar
  26. 26.
    R. Meucci et al., Phys. Rev. E 49, R2528 (1994) ADSCrossRefGoogle Scholar
  27. 27.
    R. Corbalan, J. Cortit, A.N. Pisarchik, Phys. Rev. A 51, 663 (1995)ADSCrossRefGoogle Scholar
  28. 28.
    S. Abdulrhmann, M. Ahmed, T. Okamoto, W. Ishimori, M. Yamada, IEEE J. Sel. Top. Quantum Electron. 9, 1265 (2003)CrossRefGoogle Scholar
  29. 29.
    M. Ahmed, M. Yamada, S. Abdulrhmann, Int. J. Numer. Model. 22, 434 (2009)MATHCrossRefGoogle Scholar
  30. 30.
    M. Ahmed, A. El-Lafi, Opt. Laser Technol. 40, 809 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    E. Hemery, L. Chusseau, J.M. Lourtioz, IEEE J. Quantum Electron. 26, 633 (1990)ADSCrossRefGoogle Scholar
  32. 32.
    M. Tang, S. Wang, Appl. Phys. Lett. 48, 900 (1986)ADSCrossRefGoogle Scholar
  33. 33.
    L. Chusseau, E. Hemery, J.M. Lourtioz, Appl. Phys. Lett. 55, 822 (1989)ADSCrossRefGoogle Scholar
  34. 34.
    B.C. Lam, A.L. Kellner, M.M. Sushchik, D.H.I. Abarbanel, P.K.L. Yu, J. Opt. Soc. Am. B 10, 2065 (1993) ADSCrossRefGoogle Scholar
  35. 35.
    M. Ahmed, A. El-Lafi, Pramana J. Phys. 71, 90 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    C.H. Lee, T.H. Yoon, S.Y. Shin, Appl. Phys. Lett. 46, 95 (1984)ADSCrossRefGoogle Scholar
  37. 37.
    J. Sacher, W. Elsaser, E.O. Gobel, IEEE J. Quantum Electron. 27, 373 (1991)ADSCrossRefGoogle Scholar
  38. 38.
    K.I. Kallimani, M.J.O. Mahony, IEEE J. Quantum Electron. 34, 1438 (1998) ADSCrossRefGoogle Scholar
  39. 39.
    J. Ohtsubo, Opt. Rev. 6, 1 (1999)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
  2. 2.Department of Physics, Faculty of ScienceMinia UniversityMiniaEgypt

Personalised recommendations