Advertisement

Reactions and anion desorption induced by low-energy electron exposure of condensed acetonitrile

  • A. D. Bass
  • J. H. Bredehöft
  • E. Böhler
  • L. Sanche
  • P. Swiderek
Regular Article
Part of the following topical collections:
  1. Topical issue: Electron/Positron Collision

Abstract

Thermal desorption spectrometry (TDS) and electron stimulated desorption (ESD) are employed to investigate mechanisms responsible for the formation of C2H6 in electron irradiated multilayer films of acetonitrile (CH3CN) at 30 K. Using a high sensitivity time-of-flight mass spectrometer, we observe the ESD of anionic fragments H, CH2 , CH3 and CN. Desorption occurs following dissociative electron attachment (DEA) via several negative ion resonances in the 6 to 14 eV energy range and correlates well with a “resonant” structure seen in the TDS yield of C2H6 (i.e., at mass 30 amu). It is proposed that C2H6 is formed by the reactions of CH3 radicals generated following DEA to CH3CN which also yields CN. Between 2 and 5 eV, a second resonant feature is seen in the C2H6 signal. While DEA is observed in the gas phase at these energies, no anion desorption occurs since anionic fragments likely have insufficient kinetic energy to desorb. Since the CH2 ion has not been observed in gas-phase measurements, we propose that it is formed, along with HCN (that is detected in TDS) when dissociation into CH3 and CN is hindered by adjacent molecules.

Keywords

Topical issue: Electron/Positron Collision. Guest editors: Michael Brunger, Anne Lafosse, Gaetana Laricchia, Paolo Limao-Vieira and Nigel Mason 

References

  1. 1.
    I. Bald, J. Langer, P. Tegeder, O. Ingolfsson, Int. J. Mass Spectrom. 277, 4 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    E. Illenberger, J. Momigny, Gaseous Molecular Ions (Steinkopff, Darmstadt, 1992)Google Scholar
  3. 3.
    H. Abdoul-Carime, S. Gohlke, E. Illenberger, Phys. Rev. Lett. 92, 168103 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    S. Ptasińska, S. Denifl, V. Grill, T.D. Märk, P. Scheier, S. Gohlke, M.A. Huels, E. Illenberger, Angew. Chem. Int. Ed. 44, 1647 (2005)CrossRefGoogle Scholar
  5. 5.
    S. Ptasińska, S. Denifl, V. Grill, T.D. Märk, E. Illenberger, P. Scheier, Phys. Rev. Lett. 95, 093201 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    S. Ptasińska, S. Denifl, P. Scheier, E. Illenberger, T.D. Märk, Angew. Chem. Int. Ed. 44, 6941 (2005)CrossRefGoogle Scholar
  7. 7.
    T. Hamann, A. Edtbauer, F. Ferreira da Silva, S. Denifl, P. Scheier, P. Swiderek, Phys. Chem. Chem. Phys. 13, 12305 (2011)CrossRefGoogle Scholar
  8. 8.
    W. Di, P. Rowntree, L. Sanche, Phys. Rev. B 52, 16618 (1995)ADSCrossRefGoogle Scholar
  9. 9.
    A. Lafosse, M. Bertin, D. Caceres, C. Jäggle, P. Swiderek, D. Pliszka, R. Azria, Eur. Phys. J. D 35, 363 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    I. Ipolyi, W. Michaelis, P. Swiderek, Phys. Chem. Chem. Phys. 8, 180 (2007)CrossRefGoogle Scholar
  11. 11.
    M. Heni, E. Illenberger, Int. J. Mass Spectrom. Ion Proc. 73, 127 (1986)CrossRefGoogle Scholar
  12. 12.
    W. Sailer, A. Pelc, P. Limão-Vieira, N.J. Mason, J. Limtrakul, P. Scheier, M. Probst, T.D. Märk, Chem. Phys. Lett. 381, 216 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    C.R. Arumainayagam, H.-L. Lee, R.B. Nelson, D.R. Haines, R P. Gunawardane, Surf. Sci. Rep. 65, 1 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    K. Nagesha, A.D. Bass, J. Gamache, L. Sanche, Rev. Sci. Instrum. 68, 3883 (1997)ADSCrossRefGoogle Scholar
  15. 15.
    L. Sanche, L. Parenteau, Phys. Rev. Lett. 59, 136 (1987)ADSCrossRefGoogle Scholar
  16. 16.
    M. Imhoff, L. Parenteau, L. Sanche, M.A. Huels, Phys. Chem. Chem. Phys. 7, 3359 (2005)CrossRefGoogle Scholar
  17. 17.
    A.D. Bass, L. Sanche, Low Temp. Phys. 29, 202 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    P. Rowntree, L. Parenteau, L. Sanche, J. Chem. Phys. 94, 8570 (1991)ADSCrossRefGoogle Scholar
  19. 19.
    M. Lachgar, Y. Le Coat, R. Azria, M. Tronc, E. Illenberger, Chem. Phys. Lett. 305, 408 (1999)ADSCrossRefGoogle Scholar
  20. 20.
    M. Bazin, S. Ptasiñska, A.D. Bass, L. Sanche, Phys. Chem. Chem. Phys. 11, 1610 (2009)CrossRefGoogle Scholar
  21. 21.
    M.N. Hedhili, P. Cloutier, A.D. Bass, T.E. Madey, L. Sanche, J. Chem. Phys. 125, 94704-1 (2006)CrossRefGoogle Scholar
  22. 22.
    L. Sanche, J. Chem. Phys. 71, 4860 (1979)ADSCrossRefGoogle Scholar
  23. 23.
    Electron-Molecule Interactions and Their Applications, edited by L.G. Christophorou (Academic, Orlando, 1984), Vol. 1Google Scholar
  24. 24.
    L. Sanche, Phys. Rev. Lett. 53, 1638 (1984)ADSCrossRefGoogle Scholar
  25. 25.
    A.D. Bass, C.R. Arumainayagam, L. Sanche, Int. J. Mass Spectrom. 277, 251 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    H. Sambe, D.E. Ramaker, L. Parenteau, L. Sanche, Phys. Rev. Lett. 59, 236 (1987)ADSCrossRefGoogle Scholar
  27. 27.
    L. Sanche, A.D. Bass, P. Ayotte, I.I. Fabrikant, Phys. Rev. Lett. 75, 3568 (1995)ADSCrossRefGoogle Scholar
  28. 28.
    P. Ayotte, J. Gamache, A.D. Bass, I.I. Fabrikant, L. Sanche, J. Chem. Phys. 106, 749 (1997)ADSCrossRefGoogle Scholar
  29. 29.
    M.A. Huels, L. Parenteau, M. Michaud, L. Sanche, Phys. Rev. A 51, 337 (1995)ADSCrossRefGoogle Scholar
  30. 30.
    M.A. Huels, L. Parenteau, L. Sanche, J. Chem. Phys. 100, 3940 (1994)ADSCrossRefGoogle Scholar
  31. 31.
    E. Burean, P. Swiderek, Surf. Sci. 602, 3194 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    H.-P. Fenzlaff, E. Illenberger, Int. J. Mass Spectrom. Ion Proc. 59, 185 (1984)CrossRefGoogle Scholar
  33. 33.
    S.B. Charnley, M.E. Kress, A.G.G.M. Tielens, T.J. Millar, Astrophys. J. 448, 232 (1995)ADSCrossRefGoogle Scholar
  34. 34.
    E. Burean, P. Swiderek, J. Phys. Chem. C 112, 19456 (2008)CrossRefGoogle Scholar
  35. 35.
    I. Ipolyi, E. Burean, T. Hamann, M. Cingel, S. Matejcik, P. Swiderek, Int. J. Mass Spectrom. 282, 133 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    Y.-R. Luo, Comprehensive Handbook of Chemical Bond Energies (CRC Press, Boca Raton, 2007)Google Scholar
  37. 37.
    E. Böhler, T. Hamann, P. Swiderek, unpublished resultsGoogle Scholar
  38. 38.
    Enthalpies of formation Δ H f0 : 74.0 kJ/mol (CH3CN), 437.6 kJ/mol (CN), 145.7 kJ/mol (CH3), 390.4 kJ/mol (CH2), 135.1 kJ/mol (HCN) Electron affinities EA: 3.862 eV (CN), 0.08 eV (CH3), 0.652 eV (CH2), Handbook of Chemistry & Physics, 86th edn., edited by D.R. Lide (CRC Press, Boca Raton, 2005)Google Scholar
  39. 39.
    P. Tegeder, B.M. Smirnov, E. Illenberger, Int. J. Mass Spectrom. 205, 331 (2001)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • A. D. Bass
    • 1
  • J. H. Bredehöft
    • 2
  • E. Böhler
    • 2
  • L. Sanche
    • 1
  • P. Swiderek
    • 2
  1. 1.Département de Médecine Nucléaire et Radiobiologie, Faculté de MédecineUniversité de SherbrookeSherbrookeCanada
  2. 2.Institut für Angewandte und Physikalische ChemieUniversität BremenBremenGermany

Personalised recommendations