Low energy H production by electron collision with small hydrocarbons

Regular Article
Part of the following topical collections:
  1. Topical issue: Electron/Positron Collision

Abstract

The production of low-energy H by electron impact with CH4, C2H2, C2H4, C2H6 and C3H8 has been studied within electron energy range 0−20 eV. The dissociative electron attachment and dipolar dissociation (also known as ion pair production) are contributing to formation of H in this energy range. A special ion extraction system for collection of low-energy light ions was used. Low-energy H production rates for all studied molecules are found lower yet similar to those for hydrogen at 14 eV dissociative attachment maximum. A vertical onset of ion yield is observed for the dissociative attachment in CH4, C2H2, and C3H8. The production rate of H through the dipolar dissociation is observed to be high in the case of C2H4.

Keywords

Topical issue: Electron/Positron Collision. Guest editors: Michael Brunger, Anne Lafosse, Gaetana Laricchia, Paulo Limao-Vieira and Nigel Mason 

References

  1. 1.
    W. Jacob, J. Nucl. Mat. 337-339, 839 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    D. Reiter, B. Küppers, R.K. Janev, Phys. Scr. T138, 014014 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    D.A. Williams, J. Phys.: Conf. Ser. 6, 1 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    R.P. Wayne, Chemistry of Atmospheres (Oxford University Press, Oxford, 2000)Google Scholar
  5. 5.
    V. Vuitton, P. Lavvas, R.V. Yelle, M. Galand, A. Wellbrock, G.R. Lewis, A.J. Coates, J.-E. Wahlund, Planet. Space Sci. 57, 1558 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    M.V. Petrova, F.A. Williams, Combust. Flame 144, 526 (2006)CrossRefGoogle Scholar
  7. 7.
    M.N.R. Ashfold, P.W. May, J.R. Petherbridge, K.N. Rosser, J.A. Smith, Y.A. Mankelevich, N.V. Suetin, Phys. Chem. Chem. Phys. 3, 3471 (2001)CrossRefGoogle Scholar
  8. 8.
    M. Bacal, Nucl. Fusion 46, S250 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    H. Bruhns, H. Kreckel, K. Miller, M. Lestinsky, B. Seredyuk, W. Mitthumsiri, B.L. Schmitt, M. Schnell, X. Urbain, M.L. Rappaport, C.C. Havener, D.W. Savin, Rev. Sci. Instrum. 81, 013112 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    N. Harada, E. Herbst, Astrophys. J. 685, 272 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    M. Allan, S.F. Wong, Phys. Rev. Lett. 41, 1791 (1978)ADSCrossRefGoogle Scholar
  12. 12.
    L.V. Trepka, H. Neuert, Z. Naturforsch. A 18, 1295 (1963)ADSGoogle Scholar
  13. 13.
    J. Rutkowsky, H. Drost, H.-J. Spangenberg, Ann. Phys. 37, 259 (1980)CrossRefGoogle Scholar
  14. 14.
    P. Rawat, V.S. Prabhudesai, M.A. Rahman, N. Bhargava Ram, E. Krishnakumar, Int. J. Mass Spectrom. 277, 69 (2008)Google Scholar
  15. 15.
    N. Bhargava Ram, E. Krishnakumar, Chem. Phys. Lett. 511, 22 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    O. May, J. Fedor, M. Allan, Phys. Rev. A 80, 012706 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    T.E. Sharp, J.T. Dowell, Int. J. Mass Spectrom. 46, 1530 (1967)Google Scholar
  18. 18.
    D. Rapp, D.D. Briglia, J. Chem. Phys. 43, 1480 (1965)ADSCrossRefGoogle Scholar
  19. 19.
    K. Mitsuke, S. Suzuki, T. Imamura, I. Koyano, J. Chem. Phys. 92, 6556 (1990)ADSCrossRefGoogle Scholar
  20. 20.
    K. Mitsuke, H. Hattori, H. Yoshida, J. Chem. Phys. 99, 6642 (1993)ADSCrossRefGoogle Scholar
  21. 21.
    R.A. Mackie, A.M. Sands, S.W.J. Scully, D.M.P. Holland, D.A. Shaw, K.F. Dunn, C.J. Latimer, J. Phys. B At. Mol. Opt. Phys. 35, 1061 (2002)ADSCrossRefGoogle Scholar
  22. 22.
    R.A. Mackie, S.W.J. Scully, A.M. Sands, R. Browning, K.F. Dunn, C.J. Latimer, Int. J. Mass Spectrom. 223-224, 67 (2003)CrossRefGoogle Scholar
  23. 23.
    S. Markelj, I. Čadež, Z. Rupnik, Int. J. Mass Spectrom. 275, 64 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    I. Čadež, S. Markelj, Z. Rupnik, P. Pelicon, J. Phys.: Conf. Ser. 133, 012029 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    S. Markelj, I. Čadež, J. Chem. Phys. 134, 124707 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    D. Rapp, T.E. Sharp, D.D. Briglia, Phys. Rev. Lett. 14, 533 (1965)ADSCrossRefGoogle Scholar
  27. 27.
    E. Krishnakumar, S. Denifl, I. Čadež, S. Markelj, N.J. Mason, Phys. Rev. Lett. 106, 243201 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    S.T. Chourou, A.E. Orel, Phys. Rev. A 77, 042709 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    J.C.J. Thynne, K.A.G. MacNeil, J. Phys. Chem. 75, 2584 (1967)CrossRefGoogle Scholar
  30. 30.
    V.S. Prabhudesai, A.H. Kelkar, D. Nandi, E. Krishnakumar, Phys. Rev. Lett. 95, 143202 (2005)ADSCrossRefGoogle Scholar
  31. 31.
    H.N. Varambhia, J.J. Munro, J. Tennyson, Int. J. Mass Spectrom. 271, 1 (2008)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Jožef Stefan Institute and Association EURATOM-MHESTLjubljanaSlovenia

Personalised recommendations