Formation of thermal evaporated Ge Nano-Islands by high temperature annealing

  • E. Lotfi
  • A. Ghaderi
  • S. Solaymani
  • B. Arghavani Nia
  • A. Baghizadeh
  • D. Agha-Aligol
  • M.R. Hantehzadeh
  • A. Hodaei
Regular Article
  • 215 Downloads

Abstract.

High Vacuum thermal evaporation was used to grow germanium islands on the silicon substrate covered by silicon oxide. The Ge nano-islands were formed by thermal annealing at different temperatures from 500 °C to 700 °C. Formation of islands was studied by various analytical techniques. The thickness of Ge layer was determined by rutherford backscattering spectroscopy (RBS). Also, combined with channeling technique, the composition and probable contaminants during synthesis processes were investigated. To explore the islands size and shape, both atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM) were used. Then the topographical images of surfaces were studied by AFM. The outcome of experimental evaluations of growth mechanism has indicated that with increasing the annealing temperature up to 700 °C, Ge islands were appeared from a uniform layer. Moreover, the statistical assessments of surfaces have shown that the nano-island’s sizes can be varied from several hundred nanometers to 30 nm by growing the annealing temperature. The reduction of the size along with an increase of the number of nano-islands after each thermal treatment is a major factor to prohibit us from seeing their clear images in AFM. The possibility of running statistical estimation on islands, instead, is the powerful tool of extracting and probing the distribution and the shape of Ge island’s peak in AFM images.

Keywords

Clusters and Nanostructures 

References

  1. 1.
    Zs.J. Horváth, Curr. Appl. Phys. 6, 145 (2006)CrossRefGoogle Scholar
  2. 2.
    I. Kovačević, B. Pivaca, P. Dubček, H. Zorc, N. Radic, S. Bernstorff, M. Campione, A. Sassella, Appl. Surf. Sci. 253, 3034 (2007) ADSCrossRefGoogle Scholar
  3. 3.
    L. Pavesi, J. Phys.: Condens. Matter 15, R1169 (2003) ADSCrossRefGoogle Scholar
  4. 4.
    P. Cappelletti, Microelectron. Reliab. 38, 185 (1998)CrossRefGoogle Scholar
  5. 5.
    Zs.J. Horváth, P. Basa, T. Jászi, K. Nagy, A.E. Pap, T. Szabó, P. Szöllösi, Proceedings of the International Conference on Nanomeeting-Minsk, Belarus (2007), p. 566Google Scholar
  6. 6.
    C.L. Heng, T.G. Finstad, Physica E 26, 386 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    Q. Wan, T.H. Wang, W.L. Liu, C.L. Lin, J. Cryst. Growth 249, 23 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    P. Basa, G. Molnár, L. Dobos, B. Pécz, L. Tóth, A.L. Tóth, A.A. Koós, L. Dózsa, Á. Nemcsics, Zs.J. Horváth, J. Nanosci. Nanotechnol. 8, 818 (2008)CrossRefGoogle Scholar
  9. 9.
    Ke-Fan Wang, Jin-Feng Liu, Cheng-Xiao Peng, Peng-Shou Xu, Shiqiang Wei, Physica E 39, 89 (2007) ADSCrossRefGoogle Scholar
  10. 10.
    B. Pivac, I. Kovacevic, P. Dubcek, N. Radic, S. Bernstorff, A. Slaoui, Thin Solid Films 511-512, 153 (2006) ADSCrossRefGoogle Scholar
  11. 11.
    A. Fonseca, E. Alves, N.P. Barradas, J.P. Leitão, N.A. Sobolev, M.C. Carmo, A.I. Nikiforov, H. Presting, Nucl. Instr. Methods Phys. Res. B 249, 462 (2006) ADSCrossRefGoogle Scholar
  12. 12.
    M. Mayer, SIMNRA User’s Guide, Report IPP 9/113, Max-Planck-Institut für Plasmaphysik (Garching, Germany, 1997) Google Scholar
  13. 13.
    A. Fonseca, N. Franco, E. Alves, N.P. Barradas, J.P. Leitão, N.A. Sobolev, D.F. Banhart, H. Presting, V.V. Ulyanov, A.I. Nikiforov, Nucl. Instr. Methods Phys. Res. B 241, 454 (2005)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • E. Lotfi
    • 1
  • A. Ghaderi
    • 2
  • S. Solaymani
    • 3
  • B. Arghavani Nia
    • 4
  • A. Baghizadeh
    • 5
  • D. Agha-Aligol
    • 5
  • M.R. Hantehzadeh
    • 6
  • A. Hodaei
    • 6
  1. 1.Department of PhysicSanandaj Branch, Islamic Azad UniversitySanandajIran
  2. 2.Young Researchers Club, Kermanshah Branch, Islamic Azad UniversityKermanshahIran
  3. 3.Harsin Branch, Islamic Azad UniversityHarsinIran
  4. 4.Department of PhysicsIslamic Azad UniversityKermanshahIran
  5. 5.Van de Graaff Laboratory, Physics Department, Nuclear Science and Technology Research InstituteTehranIran
  6. 6.Plasma Physics Research Center, Science and Research Branch, Islamic Azad UniversityTehranIran

Personalised recommendations