Advertisement

The first experimental investigation of the KLL Auger spectrum of Ni generated in the electron capture decay of radioactive 64Cu in a solid state matrix

  • A. Kh. Inoyatov
  • L. L. Perevoshchikov
  • A. Kovalík
  • D. V. Filosofov
  • V. M. Gorozhankin
  • M. Ryšavý
Regular Article

Abstract

The KLL Auger spectrum of Ni generated in the electron capture decay of radioactive 64Cu in a solid state matrix was measured for the first time using a combined electrostatic electron spectrometer adjusted to a 7 eV instrumental resolution. Energies and relative intensities of the all nine basic spectrum components were determined and compared with data obtained from X-ray induced spectra of metallic Ni and with theoretical results as well. Absolute energy of 6562.5 ± 1.3 eV (related to the Fermi level) measured for the dominant KL2L3(1D2) than a value obtained from the X-ray induced spectra which is probably caused by the effects of chemical bonding and physico-chemical environment. Moreover, it is higher by 20.4 eV (16σ) than a prediction of the semi-empirical calculations by Larkins which indicates an influence of the “atomic structure effect” on absolute energies of the Auger transitions following the electron capture decay and, possibly, some imperfections in the calculations. Good agreement of the measured and predicted KL1L2(3P0/1P1) transition intensity ratios indicates perceptible influence of the relativistic effects on the KLL Auger spectrum even at Z = 28.

Keywords

Atomic Physics 

References

  1. 1.
    W.N. Asaad, D. Petrini, Proc. R. Soc. Lond. A 350, 381 (1976)ADSCrossRefGoogle Scholar
  2. 2.
    M.N. Chen, B. Crasemann, H. Mark, Phys. Rev. A 21, 442 (1980)ADSCrossRefGoogle Scholar
  3. 3.
    M.H. Chen, B. Crasemann, Phys. Rev. A 8, 7 (1973)ADSCrossRefGoogle Scholar
  4. 4.
    A.Kh. Inoyatov, A. Kovalík, D.V. Filosofov, N.A. Lebedev, L.L. Perevoshchikov, V.S. Pronskih, J. Electron Spectrosc. Related Phenom. 184, 52 (2011)CrossRefGoogle Scholar
  5. 5.
    K.Ch. Inoyatov, L.L. Perevoshchikov, A. Kovalík, D.V. Filosofov, V.M. Gorozhankin, J. Electron Spectrosc. Related Phenom. 171, 53 (2009)CrossRefGoogle Scholar
  6. 6.
    A.Kh. Inoyatov, L.L. Perevoshchikov, V.M. Gorozhankin, A. Kovalík, V.I. Radchenko, D.V. Filosofov, J. Electron Spectrosc. Related Phenom. 184, 457 (2011)CrossRefGoogle Scholar
  7. 7.
    A.Kh. Inoyatov, L.L. Perevoshchikov, A. Kovalík, D.V. Filosofov, Proc. 61st Int. Conf. Nuclear Spectroscopy and Nuclear Structure (Sarov, Russia, 2011)Google Scholar
  8. 8.
    R.B. Firestone, V.S. Shirley, Tables of Isotopes, 8th edn. (Wiley, New York, 1996), p. 1497Google Scholar
  9. 9.
    Ch. Briançon, B. Legrand, R.J. Walen, Ts. Vylov, A. Minkova, A. Inoyatov, Nucl. Instrum. Methods 221, 547 (1984)CrossRefGoogle Scholar
  10. 10.
    G.L. Borchert, W. Scheck, K.P. Wieder, Z. Naturf. A 30, 274 (1975)ADSGoogle Scholar
  11. 11.
    M. Lederer, V.S. Shirley, Tables of Isotopes, 7th edn. (Wiley, New York, 1978), Appendix 3Google Scholar
  12. 12.
    K.D. Sevier, Atom. Data Nucl. Data Tables 24, 323 (1979)ADSCrossRefGoogle Scholar
  13. 13.
    C.D. Wagner et al., NIST Standard Reference Database 20, Version 3.5, http://srdata.nist.gov/xps/default.aspx
  14. 14.
    A. Inoyatov, D.V. Filosofov, V.M. Gorozhankin, A. Kovalík, L.L. Perevoshchikov, Ts. Vylov, J. Electron Spectrosc. Related Phenom. 160, 54 (2007)CrossRefGoogle Scholar
  15. 15.
    L. Kövér, I. Cserny, J. Tóth, D. Varga, T. Mukoyama, J. Electron Spectrosc. Related Phenom. 55, 114 (2001)Google Scholar
  16. 16.
    F.P. Larkins, Atn. Data Nucl. Data Tables 20, 311 (1977)ADSCrossRefGoogle Scholar
  17. 17.
    P.G. Hansen, B. Johnson, G.L. Borchert, O.N.B. Schult, in Atomic Inner-Shell Physics, edited by B. Crasemann (Plenum Press, New York, 1985), p. 237Google Scholar
  18. 18.
    E.Yu. Remeta, A.I. Lendel, Izv. Akad, Nauk. Rossii, Ser. Fiz. 58, 143 (1994)Google Scholar
  19. 19.
    A.Kh. Inoyatov, L.L. Perevoshchikov, A. Kovalík, D.V. Filosofov, V.M. Gorozhankin, J. Electron Spectrosc. Related Phenom. 171, 53 (2009)CrossRefGoogle Scholar
  20. 20.
    A.Kh. Inoyatov, D.V. Filosofov, V.M. Gorozhankin, A. Kovalík, L.L. Perevoshchikov, Ts. Vylov, J. Electron Spectrosc. Related Phenom. 160, 54 (2007)CrossRefGoogle Scholar
  21. 21.
    A. Kovalík, E.A. Yakushev, D.V. Filosofov, V.M. Gorozhankin, P.A. Petev, M.A. Mahmoud, J. Electron Spectrosc. Related Phenom. 105, 219 (1999)CrossRefGoogle Scholar
  22. 22.
    A. Kovalík, A.F. Novgorodov, V.M. Gorozhankin, E.A. Yakushev, M.A. Mahmoud, P.A. Petev, J. Electron Spectrosc. Related Phenom. 87, 1 (1997)CrossRefGoogle Scholar
  23. 23.
    A. Kovalík, A. Minkova, Ts. Vylov, R.J. Walen, Ch. Briançon, J. Electron Spectrosc. Related Phenom. 83, 181 (1997)CrossRefGoogle Scholar
  24. 24.
    W.N. Asaad, Proc. Int. Conf. Inner Shell Ionization and Future Applications (Atlanta, 1972-1973), Vol. 1, p. 455Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • A. Kh. Inoyatov
    • 1
    • 2
  • L. L. Perevoshchikov
    • 1
  • A. Kovalík
    • 1
    • 3
  • D. V. Filosofov
    • 1
  • V. M. Gorozhankin
    • 1
  • M. Ryšavý
    • 3
  1. 1.Laboratory of Nuclear ProblemsJINRDubna, Moscow RegionRussian Federation
  2. 2.Institute of Applied PhysicsNational UniversityTaskentRepublic of Uzbekistan
  3. 3.Nuclear Physics Institute of the ASCRŘež near PragueCzech Republic

Personalised recommendations