Advertisement

Theoretical analysis of aliasing noises in cold atom Mach-Zehnder interferometers

Regular Article

Abstract

We present a theoretical analysis of aliasing noises that might appear in cold atom Mach-Zehnder interferometers used for the measurement of various physical quantities. We focus more specifically on single cold atom gyroscopes. To evaluate the level of aliasing noises, we have developed a model based on the power spectral densities of the different identified noise sources as input parameters and which makes use of a servo-loop to realize a precise measurement of the rotation rate. The model allows one to take into account different modes of operation, like a continuous as well as a pulsed or even a multi-ball operation. For monokinetic atoms, we show that the intermodulation noise can be completely filtered out with a continuous mode of operation and an optimum modulation scheme for any modulation frequency but also with a pulsed operation however only for specific launching frequencies. In the case of a real continuous atomic beam having a velocity distribution, it comes out that a high attenuation can be reached which indicates clearly the potential stability improvement that can be expected from a continuous operation.

Keywords

Cold Matter and Quantum Gas 

References

  1. 1.
    Atom Interferometry, edited by P.R. Berman (Academic Press, San Diego, 1997)Google Scholar
  2. 2.
    F. Riehle, T. Kister, A. Witte, J. Helmcke, C.J. Bordé, Phys. Rev. Lett. 67, 177 (1991)ADSCrossRefGoogle Scholar
  3. 3.
    T.L. Gustavson, A. Landragin, M. Kasevich, Class. Quantum Grav. 17, 2385 (2000)ADSMATHCrossRefGoogle Scholar
  4. 4.
    T. Müller, M. Gilowski, M. Zaiser, P. Berg, Ch. Schubert, T. Wendrich, W. Ertmer, E.M. Rasel, Eur. Phys. J. D 53, 273 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    A. Gauguet, B. Canuel, T. Lévèque, W. Chaibi, A. Landragin, Phys. Rev. A 80, (2009)Google Scholar
  6. 6.
    A. Peters, K.Y. Chung, S. Chu, Metrologia 38, 25 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    J. Le Gouët, T.E. Mehlstäubler, J. Kim, S. Merlet, A. Clairon, A. Landragin, F. Pereira Dos Santos, Appl. Phys. B 92, 133 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    A. Clairon, P. Laurent, G. Santarelli, S. Ghezali, S.N. Lea, M. Bahoura, IEEE Trans. Instrum. Meas. 44, 128 (1995)CrossRefGoogle Scholar
  9. 9.
    R. Wynands, S. Weyers, Metrologia 42, 64 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    G. Santarelli, C. Audoin, A. Makdissi, P. Laurent, G.J. Dick, A. Clairon, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 45, 887 (1998)CrossRefGoogle Scholar
  11. 11.
    G.J. Dick, in Proc. 19th Precise Time and Time Interval meeting, Redendo Beach, CA, USA, 1987, pp. 133–147Google Scholar
  12. 12.
    G.J. Dick, J.D. Prestage, C.A. Greenhall, L. Maleki, in Proc. 22th Precise Time and Time Interval meeting, Vienna, VA, USA, 1990, pp. 487–508Google Scholar
  13. 13.
    A. Luiten, A. Mann, M. Costa, D. Blair, IEEE Trans. Instrum. Meas. 44, 132 (1995)CrossRefGoogle Scholar
  14. 14.
    K.A. Moler, D.S. Weiss, M. Kasevich, S. Chu, Phys. Rev. A Gen. Phys. 45, 342 (1992)ADSCrossRefGoogle Scholar
  15. 15.
    A. Papoulis, Probability, Random Variables, and Stochastic Processes (McGraw-Hill, New York, 1984)Google Scholar
  16. 16.
    W.B. Davenport Jr., W.L. Root, An Introduction to the Theory of Random Signals and Noise (IEEE Press, New York, 1987), Chap. 4Google Scholar
  17. 17.
    P. Cheinet, B. Canuel, F. Pereira Dos Santos, A. Gauguet, F. Yver-Leduc, A. Landragin, IEEE Trans. Instrum. Meas. 57, 1141 (2008)CrossRefGoogle Scholar
  18. 18.
    A. Makdissi, E. de Clercq, C. Audoin, A. Clairon, in Proc. 1997 IEEE Int. Freq. Contr. Symp. Orlando, FL, USA (1998), pp. 263–269Google Scholar
  19. 19.
    A. Makdissi, Traitement de Signal Appliqué aux Etalons Primaires de Fréquence: Amélioration de leur Exactitude et de leur Stabilité, Ph.D. thesis, University of Paris-Sud, 1999Google Scholar
  20. 20.
    I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products (Academic Press, New York, 1980)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Laboratoire Temps-Fréquence (LTF)Université de NeuchâtelNeuchâtelSwitzerland

Personalised recommendations