Applications of a simplified bilinear method to ion-acoustic solitary waves in plasma

Regular Article

Abstract

In this paper, we propose a computational method for nonlinear partial differential equations modeling ion-acoustic waves as well as dusty plasmas in laboratory and space sciences. Many types of solitary waves including soliton solutions, N-soliton solutions and singular N-soliton solutions are derived. The characteristic line method and graphical analysis are applied to discuss the solitonic propagation and collision, including the bidirectional solitons and elastic interactions. Furthermore, the effects of inhomogeneities of media and nonuniformities of boundaries, depicted by the variable coefficients, on the soliton behavior are discussed.

Keywords

Plasma Physics 

References

  1. 1.
    S. Ali, W.M. Moslem, P.K. Shukla, R. Schlickeiserd, Phys. Plasmas 14, 082307-1 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    U.M. Abdelsalam, W.M. Moslem, S. Ali, P.K. Shukla, Phys. Lett. A 372, 4923 (2008)ADSMATHCrossRefGoogle Scholar
  3. 3.
    Y.D. Jung, Phys. Plasmas 8, 3842 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    S.A. Khan, W. Masood, Phys. Plasmas 15, 062301-1 (2008)ADSGoogle Scholar
  5. 5.
    S.A. Khan, Q. Haque, Chin. Phys. Lett. 25, 4329 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    I. Kourakis, W.M. Moslem, U.M. Abdelsalam, R. Sabry, P.K. Shukla, Plasma Fusion Res. 4, 1 (2009)CrossRefGoogle Scholar
  7. 7.
    W.M. Moslem, S. Ali, P.K. Shukla, X.Y. Tang, G. Rowlands, Phys. Plasmas 14, 082308-1 (2007)ADSGoogle Scholar
  8. 8.
    R. Sabry, W.M. Moslem, P.K. Shukla, Phys. Lett. A 372, 5691 (2008)ADSMATHCrossRefGoogle Scholar
  9. 9.
    H. Washimi, T. Taniuti, Phys. Rev. Lett. 17, 996 (1966)ADSCrossRefGoogle Scholar
  10. 10.
    Y.Y. Wang, J.F. Zhang, Phys. Lett. A 372, 6509 (2008)ADSMATHCrossRefGoogle Scholar
  11. 11.
    W. Hereman, A. Nuseir, Math. Comput. Simul. 43, 13 (1997)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    W. Hereman, W. Zhuang, A MACSYMA program for the Hirota method, in 13th World Congress on Computation and Applied Mathematics (Criterion Press, Dublin, 1991), Vol. 2, p. 842Google Scholar
  13. 13.
    W. Hereman, W. Zhuang, Symbolic computation of solitons with Macsyma, in Computation and Applied Mathematics II: Differential Equations, edited by W.F. Ames, P.J. Van der Houwen (North Holland, Amsterdam, 1992), pp. 287–296Google Scholar
  14. 14.
    R. Hirota, Phys. Rev. Lett. 27, 1192 (1971)ADSMATHCrossRefGoogle Scholar
  15. 15.
    R. Hirota, The direct method in soliton theory (Cambridge University Press, Cambridge, 2004)Google Scholar
  16. 16.
    R. Hirota, J. Phys. Soc. Jpn 33, 1459 (1972)ADSCrossRefGoogle Scholar
  17. 17.
    R. Hirota, J. Math. Phys. 14, 805 (1973)MathSciNetADSMATHCrossRefGoogle Scholar
  18. 18.
    A. Bandyopadhyoy, K.P. Das, J. Plasma Phys. 62, 255 (1999)ADSCrossRefGoogle Scholar
  19. 19.
    L. Ying, G. Yi-Tian, S. Zhi-Yuan, Y. Xin, Nonlinear Dyn. 66, 575 (2011)CrossRefGoogle Scholar
  20. 20.
    D. Chakraboty, K.P. Das, J. Plasma Phys. 60, 151 (1998)ADSCrossRefGoogle Scholar
  21. 21.
    E.F. El-Shamy, Chaos Solitons Fractals 25, 665 (2005)ADSMATHCrossRefGoogle Scholar
  22. 22.
    H. Schamel, Plasma Phys. 14, 905 (1972)ADSCrossRefGoogle Scholar
  23. 23.
    A. Veksler, Y. Zarmi, Physica D 211, 57 (2005)MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of MathematicsHashemite UniversityZarqaJordan
  2. 2.Department of MathematicsAl al-Bayt UniversityMafraqJordan

Personalised recommendations