Advertisement

Dynamics of an erbium-doped fiber dual-ring laser

Regular Article

Abstract

We report results of a numerical investigation on two-dimensional parameter-spaces of a set of four autonomous, seven-parameter, first-order ordinary differential equations, which models an erbium-doped fiber dual-ring laser. By using Lyapunov exponents to numerically characterize the dynamics of the model in the parameter-space, we show that it presents typical self-organized periodic structures embedded in a chaotic region.

Keywords

Nonlinear Dynamics 

References

  1. 1.
    Fiber Lasers: Research, Technology and Applications (Lasers and Electro-Optics Research and Technology Series), edited by M. Kimura (Nova Science Publishers, New York, 2009)Google Scholar
  2. 2.
    H. Shalibeik, Rare-Earth-Doped Fiber Lasers and Amplifiers (Cuvillier Verlag, Göttingen, 2007)Google Scholar
  3. 3.
    Y. Senlin, Chaos 17, 013106 (2007) ADSCrossRefGoogle Scholar
  4. 4.
    R. Wang, K. Shen, Phys. Rev. E 65, 016207 (2001) ADSCrossRefGoogle Scholar
  5. 5.
    R. Wang, K. Shen, Chinese Phys. 10, 711 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    S.-H. Zhang, K. Shen, Chinese Phys. 11, 894 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    S.-H. Zhang, K. Shen, Chinese Phys. 13, 1216 (2004) ADSGoogle Scholar
  8. 8.
    M.W. Phillips, H. Gong, A.I. Ferguson, D.C. Hanna, Opt. Commun. 61, 215 (1987)ADSCrossRefGoogle Scholar
  9. 9.
    F. Sanchez, G. Stephan, Phys. Rev. E 53, 2110 (1996) ADSCrossRefGoogle Scholar
  10. 10.
    L. Luo, T.J. Tee, P.L. Chu, J. Opt. Soc. Am. B 15, 972 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    J.A.C. Gallas, Phys. Rev. Lett. 70, 2714 (1993) ADSCrossRefGoogle Scholar
  12. 12.
    C. Bonatto, J.C. Garreau, J.A.C. Gallas, Phys. Rev. Lett. 95, 143905 (2005) ADSCrossRefGoogle Scholar
  13. 13.
    E. Barreto, B. Hunt, C. Grebogi, J.A. Yorke, Phys. Rev. Lett. 78, 4561 (1997) ADSCrossRefGoogle Scholar
  14. 14.
    R.O. Medrano-T, I.L. Caldas, e-print arXiv:1012.2241 (2010)Google Scholar
  15. 15.
    H.A. Albuquerque, R.M. Rubinger, P.C. Rech, Phys. Lett. A 372, 4793 (2008) ADSMATHCrossRefGoogle Scholar
  16. 16.
    J.C.D. Cardoso, H.A. Albuquerque, R.M. Rubinger, Phys. Lett. A 373, 2050 (2009) ADSMATHCrossRefGoogle Scholar
  17. 17.
    C. Stegemann, H.A. Albuquerque, P.C. Rech, Chaos 20, 023103 (2010) ADSCrossRefGoogle Scholar
  18. 18.
    C. Bonatto, J.A.C. Gallas, Phys. Rev. Lett. 101, 054101 (2008) ADSCrossRefGoogle Scholar
  19. 19.
    G.M. Ramirez-Avila, J.A.C. Gallas, Phys. Lett. A 375, 143 (2010) MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    C. Bonatto, J.A.C. Gallas, Y. Ueda, Phys. Rev. E 77, 026217 (2008) ADSCrossRefGoogle Scholar
  21. 21.
    E.S. Medeiros, S.L.T. de Souza, R.O. Medrano-T, I.L. Caldas, Phys. Lett. A 374, 2628 (2010) ADSCrossRefGoogle Scholar
  22. 22.
    G.E. Testoni, P.C. Rech, Int. J. Mod. Phys. C 21, 973 (2010)MathSciNetADSMATHCrossRefGoogle Scholar
  23. 23.
    J.G. Freire, C. Bonatto, C.C. DaCamara, J.A.C. Gallas, Chaos 18, 033121 (2008) MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    J. Slipantschuk, E. Ullner, M.S. Baptista, M. Zeineddine, M. Thiel, Chaos 20, 045117 (2010) ADSCrossRefGoogle Scholar
  25. 25.
    M.A. Nascimento, J.A.C. Gallas, H. Varela, Phys. Chem. Chem. Phys. 13, 441 (2011)CrossRefGoogle Scholar
  26. 26.
    J.G. Freire, J.A.C. Gallas, Phys. Rev. E 82, 037202 (2010) ADSCrossRefGoogle Scholar
  27. 27.
    V. Kovanis, A. Gavrielides, J.A.C. Gallas, Eur. Phys. J. D 58, 181 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    P.C. Rech, Phys. Lett. A 375, 1461 (2011) ADSCrossRefGoogle Scholar
  29. 29.
    P.C. Rech, Int. J. Nonlinear Sci. 10, 179 (2010)MathSciNetMATHGoogle Scholar
  30. 30.
    R. Vitolo, P. Glendinning, J.A.C. Gallas, Phys. Rev. E 84, 016216 (2011) ADSCrossRefGoogle Scholar
  31. 31.
    R. Barrio, F. Blesa, S. Serrano, A. Shilnikov, Phys. Rev. E 84, 035201R (2011) ADSCrossRefGoogle Scholar
  32. 32.
    D.M. Maranhão, M.S. Baptista, J.C. Sartorelli, I.L. Caldas, Phys. Rev. E 77, 037202 (2008) ADSCrossRefGoogle Scholar
  33. 33.
    R. Stoop, P. Benner, Y. Uwate, Phys. Rev. Lett. 105, 074102 (2010) ADSCrossRefGoogle Scholar
  34. 34.
    K. Shen, S.-H. Zhang, Chinese Phys. 12, 149 (2003)ADSCrossRefGoogle Scholar
  35. 35.
    J.M. González-Miranda, Int. J. Bifurc. Chaos 17, 3071 (2007) MATHCrossRefGoogle Scholar
  36. 36.
    M. Storace, D. Linaro, E. de Lange, Chaos 18, 033128 (2008) MathSciNetADSCrossRefGoogle Scholar
  37. 37.
    D. Linaro, T. Poggi, M. Storace, Phys. Lett. A 374, 4589 (2010) ADSCrossRefGoogle Scholar
  38. 38.
    H.A. Albuquerque, P.C. Rech, Int. J. Circ. Theor. Appl. (2010), in press, DOI:  10.1002/cta.713
  39. 39.
    J.A.C. Gallas, Int. J. Bifurc. Chaos 20, 197 (2010)MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    A. Endler, J.A.C. Gallas, C.R. Acad. Sci. Paris, Ser. I 342, 681 (2006)MATHGoogle Scholar
  41. 41.
    E.N. Lorenz, Physica D 237, 1689 (2008) MathSciNetADSMATHCrossRefGoogle Scholar
  42. 42.
    C. Bonatto, J.A.C. Gallas, Phys. Rev. E 75, R055204 (2007) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Departamento de FísicaUniversidade do Estado de Santa CatarinaJoinvilleBrazil

Personalised recommendations