The European Physical Journal D

, Volume 65, Issue 3, pp 523–532 | Cite as

Condensation state of ultra-cold Bose atomic gases with pure gradient interactions with negative coefficient

Regular Article Cold Matter and Quantum Gases

Abstract

Within the framework of quantum field theory, we find that uniform Bose atomic gases with pure gradient interactions with negative coefficient can undergo a Bardeen-Cooper-Schrieffer (BCS) condensation below a critical temperature. In the BCS condensation state, bare atoms with opposite wave vectors are bound into pairs, and unpaired bare atoms are transformed into a new kind of quasi-particle, i.e. the dressed atom. The atom-pair system is a condensate or a superfluid and the dressed-atom system is a normal fluid. At absolute zero temperature the condensate possesses a lowest negative energy. When the total interaction strength of atoms is large enough, the energy of the condensate is a monotonically increasing function of temperature and interaction strength. The critical temperature and the effective mass of dressed atoms are derived analytically. The transition from the BCS condensation state to the normal state is a first-order phase transition.

Keywords

Critical Temperature Atom System Atom Pair Feshbach Resonance Bare Atom 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Science 269, 198 (1995)CrossRefADSGoogle Scholar
  2. 2.
    K.B. Davis, M.O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn, W. Ketterle, Phys. Rev. Lett. 75, 3969 (1995)CrossRefADSGoogle Scholar
  3. 3.
    C.C. Bradley, C.A. Sackett, J.J. Tollett, R.G. Hulet, Phys. Rev. Lett. 75, 1687 (1995)CrossRefADSGoogle Scholar
  4. 4.
    M. Luban, Phys. Rev. 128, 965 (1962)CrossRefMATHADSMathSciNetGoogle Scholar
  5. 5.
    W.A.B. Evans, Y. Imry, Nuovo Cimento B 63, 155 (1969)CrossRefADSGoogle Scholar
  6. 6.
    M. Girardeau, R. Arnowitt, Phys. Rev. 113, 755 (1959)CrossRefMATHADSMathSciNetGoogle Scholar
  7. 7.
    C.J. Pethick, H. Smith, Bose-Einstein Condensation in Dilute Gases (Cambridge University Press, Cambridge, 2008)Google Scholar
  8. 8.
    L. Pitaevskii, S. Stringari, Bose-Einstein Condensation (Oxford University Press, Oxford, 2003)Google Scholar
  9. 9.
    M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, I. Bloch, Nature 415, 39 (2002)CrossRefADSGoogle Scholar
  10. 10.
    Yong-il Shin, C.H. Schunck, A. Schirotzek, W. Ketterle, Nature 451, 689 (2008)CrossRefADSGoogle Scholar
  11. 11.
    C.Y. Lin, D.S. Lee, R.J. Rivers, Phys. Rev. A 80, 043621 (2009)CrossRefADSGoogle Scholar
  12. 12.
    T. Köhler, K. Góral, P.S. Julienne, Rev. Mod. Phys. 78, 1311 (2006)CrossRefADSGoogle Scholar
  13. 13.
    M. Lewenstein, L. You, Phys. Rev. A 53, 909 (1996)CrossRefADSGoogle Scholar
  14. 14.
    S.E. Pollack, D. Dries, M. Junker, Y.P. Chen, T.A. Corcovilos, R.G. Hulet, Phys. Rev. Lett. 102, 090402 (2009)CrossRefADSGoogle Scholar
  15. 15.
    J.L. Roberts, N.R. Claussen, S.L. Cornish, E.A. Donley, E.A. Cornell, C.E. Wieman, Phys. Rev. Lett. 86, 4211 (2001)CrossRefADSGoogle Scholar
  16. 16.
    S.T. Beliaev, Sov. Phys. JETP 7, 289 (1958)MathSciNetGoogle Scholar
  17. 17.
    A.L. Fetter, J.D. Walecka, Quantum Theory of Many-Particle Systems (McGraw-Hill, New York, 1971), p. 316Google Scholar
  18. 18.
    J. Callaway, Quantum Theory of the Solid State, 2nd edn. (Academic Press, New York, 1991), p. 720Google Scholar
  19. 19.
    L.E. Reichl, A Modern Course in Statistical Physics (University of Texas Press, Austin, 1980)Google Scholar
  20. 20.
    B.M. Caradoc-Davies, R.J. Ballagh, K. Burnett, Phys. Rev. Lett. 83, 895 (1999)CrossRefADSGoogle Scholar
  21. 21.
    P.A. Ruprecht, M.J. Holland, K. Burnett, M. Edwards, Phys. Rev. A 51, 4704 (1995)CrossRefADSGoogle Scholar
  22. 22.
    L.N. Cooper, Phys. Rev. 104, 1189 (1956)CrossRefMATHADSGoogle Scholar
  23. 23.
    J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108, 1175 (1957)CrossRefMATHADSMathSciNetGoogle Scholar
  24. 24.
    M.W.J. Romans, R.A. Duine, S. Sachdev, H.T.C. Stoof, Phys. Rev. Lett. 93, 020405 (2004)CrossRefADSGoogle Scholar
  25. 25.
    L. Radzihovsky, J. Park, P.B. Weichman, Phys. Rev. Lett. 92, 160402 (2004)CrossRefADSGoogle Scholar
  26. 26.
    S. Diehl, M. Baranov, A.J. Daley, P. Zoller, Phys. Rev. Lett. 104, 165301 (2010)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.School of PhysicsHuazhong University of Science and TechnologyWuhanP.R. China

Personalised recommendations