Skip to main content
Log in

Condensation state of ultra-cold Bose atomic gases with pure gradient interactions with negative coefficient

  • Regular Article
  • Cold Matter and Quantum Gases
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Within the framework of quantum field theory, we find that uniform Bose atomic gases with pure gradient interactions with negative coefficient can undergo a Bardeen-Cooper-Schrieffer (BCS) condensation below a critical temperature. In the BCS condensation state, bare atoms with opposite wave vectors are bound into pairs, and unpaired bare atoms are transformed into a new kind of quasi-particle, i.e. the dressed atom. The atom-pair system is a condensate or a superfluid and the dressed-atom system is a normal fluid. At absolute zero temperature the condensate possesses a lowest negative energy. When the total interaction strength of atoms is large enough, the energy of the condensate is a monotonically increasing function of temperature and interaction strength. The critical temperature and the effective mass of dressed atoms are derived analytically. The transition from the BCS condensation state to the normal state is a first-order phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Science 269, 198 (1995)

    Article  ADS  Google Scholar 

  2. K.B. Davis, M.O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn, W. Ketterle, Phys. Rev. Lett. 75, 3969 (1995)

    Article  ADS  Google Scholar 

  3. C.C. Bradley, C.A. Sackett, J.J. Tollett, R.G. Hulet, Phys. Rev. Lett. 75, 1687 (1995)

    Article  ADS  Google Scholar 

  4. M. Luban, Phys. Rev. 128, 965 (1962)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. W.A.B. Evans, Y. Imry, Nuovo Cimento B 63, 155 (1969)

    Article  ADS  Google Scholar 

  6. M. Girardeau, R. Arnowitt, Phys. Rev. 113, 755 (1959)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. C.J. Pethick, H. Smith, Bose-Einstein Condensation in Dilute Gases (Cambridge University Press, Cambridge, 2008)

  8. L. Pitaevskii, S. Stringari, Bose-Einstein Condensation (Oxford University Press, Oxford, 2003)

  9. M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, I. Bloch, Nature 415, 39 (2002)

    Article  ADS  Google Scholar 

  10. Yong-il Shin, C.H. Schunck, A. Schirotzek, W. Ketterle, Nature 451, 689 (2008)

    Article  ADS  Google Scholar 

  11. C.Y. Lin, D.S. Lee, R.J. Rivers, Phys. Rev. A 80, 043621 (2009)

    Article  ADS  Google Scholar 

  12. T. Köhler, K. Góral, P.S. Julienne, Rev. Mod. Phys. 78, 1311 (2006)

    Article  ADS  Google Scholar 

  13. M. Lewenstein, L. You, Phys. Rev. A 53, 909 (1996)

    Article  ADS  Google Scholar 

  14. S.E. Pollack, D. Dries, M. Junker, Y.P. Chen, T.A. Corcovilos, R.G. Hulet, Phys. Rev. Lett. 102, 090402 (2009)

    Article  ADS  Google Scholar 

  15. J.L. Roberts, N.R. Claussen, S.L. Cornish, E.A. Donley, E.A. Cornell, C.E. Wieman, Phys. Rev. Lett. 86, 4211 (2001)

    Article  ADS  Google Scholar 

  16. S.T. Beliaev, Sov. Phys. JETP 7, 289 (1958)

    MathSciNet  Google Scholar 

  17. A.L. Fetter, J.D. Walecka, Quantum Theory of Many-Particle Systems (McGraw-Hill, New York, 1971), p. 316

  18. J. Callaway, Quantum Theory of the Solid State, 2nd edn. (Academic Press, New York, 1991), p. 720

  19. L.E. Reichl, A Modern Course in Statistical Physics (University of Texas Press, Austin, 1980)

  20. B.M. Caradoc-Davies, R.J. Ballagh, K. Burnett, Phys. Rev. Lett. 83, 895 (1999)

    Article  ADS  Google Scholar 

  21. P.A. Ruprecht, M.J. Holland, K. Burnett, M. Edwards, Phys. Rev. A 51, 4704 (1995)

    Article  ADS  Google Scholar 

  22. L.N. Cooper, Phys. Rev. 104, 1189 (1956)

    Article  MATH  ADS  Google Scholar 

  23. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108, 1175 (1957)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. M.W.J. Romans, R.A. Duine, S. Sachdev, H.T.C. Stoof, Phys. Rev. Lett. 93, 020405 (2004)

    Article  ADS  Google Scholar 

  25. L. Radzihovsky, J. Park, P.B. Weichman, Phys. Rev. Lett. 92, 160402 (2004)

    Article  ADS  Google Scholar 

  26. S. Diehl, M. Baranov, A.J. Daley, P. Zoller, Phys. Rev. Lett. 104, 165301 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, Z. Condensation state of ultra-cold Bose atomic gases with pure gradient interactions with negative coefficient. Eur. Phys. J. D 65, 523–532 (2011). https://doi.org/10.1140/epjd/e2011-20339-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2011-20339-1

Keywords

Navigation