The European Physical Journal D

, Volume 65, Issue 1–2, pp 133–139 | Cite as

Density waves in layered systems with fermionic polarmolecules

Regular Article Cold and ultracold molecules

Abstract

A layered system of two-dimensional planes containing fermionic polar molecules can potentially realize a number of exotic quantum many-body states. Among the predictions, are density-wave instabilities driven by the anisotropic part of the dipole-dipole interaction in a single layer. However, in typical multilayer setups it is reasonable to expect that the onset and properties of a density-wave are modified by adjacent layers. Here we show that this is indeed the case. For multiple layers the critical strength for the density-wave instability decreases with the number of layers. The effect depends on density and is more pronounced in the low density regime. The lowest solution of the instability corresponds to the density waves in the different layers being in-phase, whereas higher solutions have one or several adjacent layers that are out of phase. The parameter regime needed to explore this instability is within reach of current experiments.

Keywords

Density Wave Adjacent Layer Lower Solution Layered System Critical Strength 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 80, 1215 (2008) ADSCrossRefGoogle Scholar
  3. 3.
    J. Doyle, B. Friedrich, R.V. Krems, F. Masnou-Seeuws, Eur. Phys. J. D 31, 149 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    S. Ospelkaus et al., Nature Phys. 4, 622 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    K.K. Ni et al., Science 322, 231 (2008) ADSCrossRefGoogle Scholar
  6. 6.
    J. Deiglmayr et al., Phys. Rev. Lett. 101, 133004 (2008) ADSCrossRefGoogle Scholar
  7. 7.
    F. Lang, K. Winkler, C. Strauss, R. Grimm, J.H. Denschlag, Phys. Rev. Lett. 101, 133005 (2008) ADSCrossRefGoogle Scholar
  8. 8.
    S. Ospelkaus et al., Science 327, 853 (2010) ADSCrossRefGoogle Scholar
  9. 9.
    K.K. Ni et al., Nature 464, 1324 (2010) ADSCrossRefGoogle Scholar
  10. 10.
    M.H.G. de Miranda et al., Nature Phys. 7, 502 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    M.A. Baranov, K. Osterloh, M. Lewenstein, Phys. Rev. Lett. 94, 070404 (2005) ADSCrossRefGoogle Scholar
  12. 12.
    D.-W. Wang, M.D. Lukin, E. Demler, Phys. Rev. Lett. 97, 180413 (2006) ADSCrossRefGoogle Scholar
  13. 13.
    D.-W. Wang, Phys. Rev. Lett. 98, 060403 (2007) ADSCrossRefGoogle Scholar
  14. 14.
    C. Mora, O. Parcollet, X. Waintal, Phys. Rev. B 76, 064511 (2007) ADSCrossRefGoogle Scholar
  15. 15.
    H.-P. Büchler et al., Phys. Rev. Lett. 98, 060404 (2007) CrossRefGoogle Scholar
  16. 16.
    G.E. Astrakharchik, J. Boronat, I.L. Kurbakov, Yu.E. Lozovik, Phys. Rev. Lett. 98, 060405 (2007) ADSCrossRefGoogle Scholar
  17. 17.
    D.-W. Wang, E. Demler, e-print arXiv:0812.1838v1Google Scholar
  18. 18.
    G.M. Bruun, E. Taylor, Phys. Rev. Lett. 101, 245301 (2008) ADSCrossRefGoogle Scholar
  19. 19.
    M.A. Baranov, Phys. Rep. 464, 71 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    S.-M. Shih, D.-W. Wang, Phys. Rev. A 79, 065603 (2009) ADSCrossRefGoogle Scholar
  21. 21.
    T. Lahaye, C. Menotti, L. Santos, M. Lewenstein, T. Pfau, Rep. Prog. Phys. 72, 126401 (2009) ADSCrossRefGoogle Scholar
  22. 22.
    R.M. Lutchyn, E. Rossi, S. Das Sarma, Phys. Rev. A 82, R061604 (2010) ADSCrossRefGoogle Scholar
  23. 23.
    N.R. Cooper, G.V. Shlyapnikov, Phys. Rev. Lett. 103, 155302 (2009) ADSCrossRefGoogle Scholar
  24. 24.
    A.C. Potter et al., Phys. Rev. Lett. 105, 220406 (2010) ADSCrossRefGoogle Scholar
  25. 25.
    A. Pikovski, M. Klawunn, G.V. Shlyapnikov, L. Santos, Phys. Rev. Lett. 105, 215302 (2010) ADSCrossRefGoogle Scholar
  26. 26.
    N.T. Zinner, B. Wunsch, D. Pekker, D.-W. Wang, e-print arXiv:1009.2030v1Google Scholar
  27. 27.
    M. Baranov, A. Micheli, S. Ronen, P. Zoller, Phys. Rev. A 83, 043602 (2011) ADSCrossRefGoogle Scholar
  28. 28.
    Y. Yamaguchi, T. Sogo, T. Ito, T. Miyakawa, Phys. Rev. A 82, 013643 (2010) ADSCrossRefGoogle Scholar
  29. 29.
    K. Sun, C. Wu, S. Das Sarma, Phys. Rev. B 82, 075105 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    F. Stern, Phys. Rev. Lett. 18, 546 (1967)ADSCrossRefGoogle Scholar
  31. 31.
    G.F. Giuliani, G. Vignale, Quantum Theory of the Electron Liquid (Cambridge University Press, New York, 2005) Google Scholar
  32. 32.
    L. Zheng, A.H. MacDonald, Phys. Rev. B 49, 5522 (1994) ADSCrossRefGoogle Scholar
  33. 33.
    J. Hubbard, Proc. R. Soc. Lond. A 243, 336 (1957) MathSciNetADSGoogle Scholar
  34. 34.
    U.R. Fischer, Phys. Rev. A 73, R031602 (2006) ADSCrossRefGoogle Scholar
  35. 35.
    J.C. Cremon, G.M. Bruun, S.M. Reimann, Phys. Rev. Lett. 105, 255301 (2010) ADSCrossRefGoogle Scholar
  36. 36.
    J.R. Armstrong, N.T. Zinner, D.V. Fedorov, A.S. Jensen, Europhys. Lett. 91, 16001 (2010) ADSCrossRefGoogle Scholar
  37. 37.
    M. Klawunn, A. Pivovski, L. Santos, Phys. Rev. A 82, 044701 (2010) ADSCrossRefGoogle Scholar
  38. 38.
    A.G. Volosniev et al., J. Phys. B At. Mol. Opt. Phys. 44, 125301 (2011) ADSCrossRefGoogle Scholar
  39. 39.
    D.V. Fedorov, J.R. Armstrong, N.T. Zinner, A.S. Jensen, Few-body Syst. 50, 417 (2011)ADSCrossRefGoogle Scholar
  40. 40.
    A.G. Volosniev, D.V. Fedorov, A.S. Jensen, N.T. Zinner, Phys. Rev. Lett. 106, 250401 (2011) ADSCrossRefGoogle Scholar
  41. 41.
    B. Wunsch et al., Phys. Rev. Lett. 107, 073201 (2011) ADSCrossRefGoogle Scholar
  42. 42.
    V.L. Berezinskii, Sov. Phys. JETP 34, 610 (1972)ADSGoogle Scholar
  43. 43.
    J.M. Kosterlitz, D.J. Thouless, J. Phys. C 7, 1046 (1974)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of Physics and AstronomyAarhus UniversityÅrhus CDenmark

Personalised recommendations