The European Physical Journal D

, Volume 65, Issue 1–2, pp 151–160 | Cite as

The prospects of sympathetic cooling of NH molecules with Li atoms

  • Alisdair O. G. Wallis
  • Edward J. J. Longdon
  • Piotr S. Żuchowski
  • Jeremy M. Hutson
Regular Article Cold and ultracold molecules


We calculate the quartet potential energy surface for Li+NH and use it to calculate elastic and spin-relaxation cross sections for collisions in magnetically trappable spin-stretched states. The potential is strongly anisotropic but spin-relaxation collisions are still suppressed by centrifugal barriers when both species are in spin-stretched states. In the ultracold regime, both the elastic and inelastic cross sections fluctuate dramatically as the potential is varied because of Feshbach resonances. The potential-dependence is considerably reduced at higher energies. The major effect of using an unconverged basis set in the scattering calculations is to shift the resonances without changing their general behaviour. We have calculated the ratio of elastic and spin-relaxation cross sections, as a function of collision energy and magnetic field, for a variety of potential energy surfaces. Most of the surfaces produce ratios that are favorable for sympathetic cooling, at temperatures below about 20 mK.


Potential Energy Surface Feshbach Resonance Elastic Cross Section Inelastic Cross Section Kinetic Energy Release 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Science 269, 198 (1995)ADSCrossRefGoogle Scholar
  2. 2.
    K.B. Davis, M.O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn, W. Ketterle, Phys. Rev. Lett. 75, 3969 (1995)ADSCrossRefGoogle Scholar
  3. 3.
    J. Doyle, B. Friedrich, R.V. Krems, F. Masnou-Seeuws, Eur. Phys. J. D 31, 149 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    R.V. Krems, Int. Rev. Phys. Chem. 24, 99 (2005)CrossRefGoogle Scholar
  5. 5.
    B. Friedrich, J.M. Doyle, Chem. Phys. Chem. 10, 604 (2009)CrossRefGoogle Scholar
  6. 6.
    J.J. Hudson, B.E. Sauer, M.R. Tarbutt, E.A. Hinds, Phys. Rev. Lett. 89, 023003 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    H. Bethlem, W. Ubachs, Faraday Discuss. 142, 25 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    D. DeMille, Phys. Rev. Lett. 88, 067901 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    M.T. Bell, T.P. Softley, Mol. Phys. 107, 99 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    W.D. Phillips, Rev. Mod. Phys. 70, 721 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    H.L. Bethlem, G. Meijer, Int. Rev. Phys. Chem. 22, 73 (2003)CrossRefGoogle Scholar
  12. 12.
    J.M. Hutson, P. Soldán, Int. Rev. Phys. Chem. 25, 497 (2006)CrossRefGoogle Scholar
  13. 13.
    J.G. Danzl, E. Haller, M. Gustavsson, M.J. Mark, R. Hart, N. Bouloufa, O. Dulieu, H. Ritsch, H.C. Nägerl, Science 321, 1062 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    F. Lang, K. Winkler, C. Strauss, R. Grimm, J.H. Denschlag, Phys. Rev. Lett. 101, 133005 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    K.K. Ni, S. Ospelkaus, M.H.G. de Miranda, A. Péer, B. Neyenhuis, J.J. Zirbel, S. Kotochigova, P.S. Julienne, D.S. Jin, J. Ye, Science 322, 231 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    J.G. Danzl, M.J. Mark, E. Haller, M. Gustavsson, R. Hart, J. Aldegunde, J.M. Hutson, H.C. Nägerl, Nature Phys. 6, 265 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    J.D. Weinstein, R. deCarvalho, T. Guillet, B. Friedrich, J.M. Doyle, Nature 395, 148 (1998)ADSCrossRefGoogle Scholar
  18. 18.
    D. Egorov, W.C. Campbell, B. Friedrich, S.E. Maxwell, E. Tsikata, L.D. van Buuren, J.M. Doyle, Eur. Phys. J. D 31, 307 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    W.C. Campbell, E. Tsikata, H.I. Lu, L.D. van Buuren, J.M. Doyle, Phys. Rev. Lett. 98, 213001 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    E. Tsikata, W.C. Campbell, M.T. Hummon, H.I. Lu, J.M. Doyle, New J. Phys. 12, 065028 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    M.T. Hummon, W.C. Campbell, H.I. Lu, E. Tsikata, Y. Wang, J.M. Doyle, Phys. Rev. A 78, 050702 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    S. Hoekstra, M. Metsala, P.C. Zieger, L. Scharfenberg, J.J. Gilijamse, G. Meijer, S.Y.T. van de Meerakker, Phys. Rev. A 76, 063408 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    S.Y.T. van de Meerakker, R.T. Jongma, H.L. Bethlem, G. Meijer, Phys. Rev. A 64, 041401(R) (2001)ADSGoogle Scholar
  24. 24.
    D.J. Haxton, S.A. Wrathmall, H.J. Lewandowski, C.H. Greene, Phys. Rev. A 80, 022708 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    R. deCarvalho, J. Kim, J.D. Weinstein, J.M. Doyle, B. Friedrich, T. Guillet, D. Patterson, Eur. Phys. J. D 7, 289 (1999)ADSCrossRefGoogle Scholar
  26. 26.
    D.J. Larson, J.C. Bergquist, J.J. Bollinger, W.M. Itano, D.J. Wineland, Phys. Rev. Lett. 57, 70 (1986)ADSCrossRefGoogle Scholar
  27. 27.
    A. Ostendorf, C.B. Zhang, M.A. Wilson, D. Offenberg, B. Roth, S. Schiller, Phys. Rev. Lett. 97, 243005 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    C.J. Myatt, E.A. Burt, R.W. Ghrist, E.A. Cornell, C.E. Wieman, Phys. Rev. Lett. 78, 586 (1997)ADSCrossRefGoogle Scholar
  29. 29.
    A.G. Truscott, K.E. Strecker, W.I. McAlexander, G.B. Partridge, R.G. Hulet, Science 291, 2570 (2001)ADSCrossRefGoogle Scholar
  30. 30.
    G. Modugno, G. Ferrari, G. Roati, R.J. Brecha, A. Simoni, M. Inguscio, Science 294, 1320 (2001)ADSCrossRefGoogle Scholar
  31. 31.
    P. Soldán, J.M. Hutson, Phys. Rev. Lett. 92, 163202 (2004)ADSCrossRefGoogle Scholar
  32. 32.
    M. Lara, J.L. Bohn, D. Potter, P. Soldán, J.M. Hutson, Phys. Rev. Lett. 97, 183201 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    M. Lara, J.L. Bohn, D.E. Potter, P. Soldán, J.M. Hutson, Phys. Rev. A 75, 012704 (2007)ADSCrossRefGoogle Scholar
  34. 34.
    M. Tacconi, E. Bodo, F.A. Gianturco, Theor. Chem. Acc. 117, 649 (2007)CrossRefGoogle Scholar
  35. 35.
    M. Tacconi, E. Bodo, F.A. Gianturco, Phys. Rev. A 75, 012708 (2007)ADSCrossRefGoogle Scholar
  36. 36.
    M. Tacconi, L. Gonzalez-Sanchez, E. Bodo, F.A. Gianturco, Phys. Rev. A 76, 032702 (2007)ADSCrossRefGoogle Scholar
  37. 37.
    P.S. Żuchowski, J.M. Hutson, Phys. Rev. A 78, 022701 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    P.S. Żuchowski, J.M. Hutson, Phys. Rev. A 79, 062708 (2009)ADSCrossRefGoogle Scholar
  39. 39.
    P. Soldán, P.S. Żuchowski, J.M. Hutson, Faraday Discuss. 142, 191 (2009)ADSCrossRefGoogle Scholar
  40. 40.
    A.O.G. Wallis, J.M. Hutson, Phys. Rev. Lett. 103, 183201 (2009)ADSCrossRefGoogle Scholar
  41. 41.
    T.E. Mehlstäubler, K. Moldenhauer, M. Riedmann, N. Rehbein, J. Friebe, E.M. Rasel, W. Ertmer, Phys. Rev. A 77, 021402(R) (2008)ADSCrossRefGoogle Scholar
  42. 42.
    P.J. Knowles, C. Hampel, H.J. Werner, J. Chem. Phys. 99, 5219 (1993)ADSCrossRefGoogle Scholar
  43. 43.
    J. Čížek, J. Chem. Phys. 45, 4256 (1966)CrossRefGoogle Scholar
  44. 44.
    T.H. Dunning Jr., J. Chem. Phys. 90, 1007 (1989)ADSCrossRefGoogle Scholar
  45. 45.
    H.J. Werner et al., MOLPRO, version 2006.1: A package of ab initio programs (2006), see
  46. 46.
    S.F. Boys, F. Bernardi, Mol. Phys. 19, 553 (1970)ADSCrossRefGoogle Scholar
  47. 47.
    C.R. Brazier, R.S. Ram, P.F. Bernath, J. Mol. Spectrosc. 120, 381 (1986)ADSCrossRefGoogle Scholar
  48. 48.
    T.S. Ho, H. Rabitz, J. Chem. Phys. 104, 2584 (1996)ADSCrossRefGoogle Scholar
  49. 49.
    P. Soldán, J.M. Hutson, J. Chem. Phys. 112, 4415 (2000)ADSCrossRefGoogle Scholar
  50. 50.
    K.M. Jones, E. Tiesinga, P.D. Lett, P.S. Julienne, Rev. Mod. Phys. 78, 483 (2006)ADSCrossRefGoogle Scholar
  51. 51.
    G.F. Gribakin, V.V. Flambaum, Phys. Rev. A 48, 546 (1993)ADSCrossRefGoogle Scholar
  52. 52.
    M. Mizushima, Theory of Rotating Diatomic Molecules (Wiley, New York, 1975)Google Scholar
  53. 53.
    M.L. González-Martínez, J.M. Hutson, Phys. Rev. A 75, 022702 (2007)ADSCrossRefGoogle Scholar
  54. 54.
    R.V. Krems, A. Dalgarno, J. Chem. Phys. 120, 2296 (2004)ADSCrossRefGoogle Scholar
  55. 55.
    H. Cybulski, R.V. Krems, H.R. Sadeghpour, A. Dalgarno, J. Kłos, G.C. Groenenboom, A. van der Avoird, D. Zgid, G. Chałasiński, J. Chem. Phys. 122, 094307 (2005)ADSCrossRefGoogle Scholar
  56. 56.
    W.C. Campbell, T.V. Tscherbul, H.I. Lu, E. Tsikata, R.V. Krems, J.M. Doyle, Phys. Rev. Lett. 102, 013003 (2009)ADSCrossRefGoogle Scholar
  57. 57.
    J.M. Hutson, S. Green, MOLSCAT computer program, version 14, distributed by Collaborative Computational Project No. 6 of the UK Engineering and Physical Sciences Research Council (1994)Google Scholar
  58. 58.
    M.H. Alexander, D.E. Manolopoulos, J. Chem. Phys. 86, 2044 (1987)ADSCrossRefGoogle Scholar
  59. 59.
    L.M.C. Janssen, P.S. Żuchowski, A. van der Avoird, G.C. Groenenboom, J.M. Hutson, Phys. Rev. A 83, 022713 (2011)ADSCrossRefGoogle Scholar
  60. 60.
    L.M.C. Janssen, P.S. Żuchowski, A. van der Avoird, J.M. Hutson, G.C. Groenenboom, J. Chem. Phys. 134, 124309 (2011)ADSCrossRefGoogle Scholar
  61. 61.
    P.S. Żuchowski, J.M. Hutson, Phys. Chem. Chem. Phys. 13, 3669 (2011)CrossRefGoogle Scholar
  62. 62.
    E. Majorana, Nuovo Cimento 9, 43 (1932)MATHCrossRefGoogle Scholar
  63. 63.
    W. Petrich, M.H. Anderson, J.R. Ensher, E.A. Cornell, Phys. Rev. Lett. 74, 3352 (1995)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Alisdair O. G. Wallis
    • 1
  • Edward J. J. Longdon
    • 1
  • Piotr S. Żuchowski
    • 1
  • Jeremy M. Hutson
    • 1
  1. 1.Department of ChemistryDurham UniversityDurhamUK

Personalised recommendations