Advertisement

Interatomic potentials at short range using Madelung’s equations

  • L. Stanton
Regular Article
  • 76 Downloads

Abstract

Interatomic potentials at short range are investigated starting from the united atom electron density. Prior work has utilised time independent Rayleigh-Schrödinger perturbation theory, adapted to overcome difficulties with convergence of the power series in internuclear distance, and has been confined to diatomic species. This work presents a time dependent approach, based on Madelung’s equations, in which the electron density evolves continuously from that of the united atom to the density of the polyatomic system; no power series is involved, there are no convergence difficulties and the approach is applicable to polyatomic systems. Electronic separation and interaction energies are calculated and compared to previous calculations. Some triatomic and tetratomic arrays of hydrogen atoms are examined and three and four body interaction terms estimated.

Keywords

Short Range Unite Atom Internuclear Distance Interatomic Potential Polyatomic System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    R.A. Buckingham, Trans. Faraday Soc. 54, 453 (1958)CrossRefGoogle Scholar
  2. 2.
    W. Bingel, J. Chem. Phys. 30, 1250 (1959)ADSCrossRefGoogle Scholar
  3. 3.
    W. Bingel, J. Chem. Phys. 38, 274 (1963)ADSCrossRefGoogle Scholar
  4. 4.
    W.B. Brown, Discuss. Faraday Soc. 40, 140 (1965)CrossRefGoogle Scholar
  5. 5.
    D.M. Duparc, R.A. Buckingham, Proc. Phys. Soc. 83, 731 (1964)ADSCrossRefGoogle Scholar
  6. 6.
    W.B. Brown, Discuss. Faraday Soc. 40, 173 (1965)CrossRefGoogle Scholar
  7. 7.
    P.M. Morse, E.C.G. Stueckelberg, Phys. Rev. 33, 932 (1929)ADSCrossRefGoogle Scholar
  8. 8.
    W.B. Brown, Chem. Phys. Lett. 1, 655 (1968)ADSCrossRefGoogle Scholar
  9. 9.
    W.B. Brown, J.D. Power, Proc. R. Soc. A 317, 545 (1970)ADSCrossRefMathSciNetGoogle Scholar
  10. 10.
    R.K. Pathak, A.J. Thakkar, J. Chem. Phys. 87, 2186 (1987)ADSCrossRefGoogle Scholar
  11. 11.
    J. Komasa, J. Chem. Phys. 110, 7909 (1999)ADSCrossRefGoogle Scholar
  12. 12.
    J. Goodisman, in Diatomic Interaction Potentials Theory (Academic, New York, 1973), Vol. 2, p. 120Google Scholar
  13. 13.
    A.J. Stone, in Theory of Intermolecular Forces (Clarendon, Oxford, 1997), Chap. 6Google Scholar
  14. 14.
    E. Madelung, Z. Phys. 40, 322 (1926)ADSGoogle Scholar
  15. 15.
    P.A.M. Dirac, Phys. Z. Sowjetunion 3, 64 (1933)MATHGoogle Scholar
  16. 16.
    P.A.M. Dirac, in Principles of Quantum Mechanics (Clarendon, Oxford, 1958), Sects. 31 and 32Google Scholar
  17. 17.
    L.D. Landau, E.M. Lifschitz, in Course of Theoretical Physics, Mechanics (Pergamon, Oxford, 1960), Vol. 1, Chap. 3, Sect. 15Google Scholar
  18. 18.
    R.T. Pack, W.B. Brown, J. Chem. Phys. 45, 556 (1966)ADSCrossRefGoogle Scholar
  19. 19.
    E.T. Steiner, J. Chem. Phys. 39, 2365 (1966)ADSCrossRefGoogle Scholar
  20. 20.
    A. Abramowitz, I.A. Stegun, in Handbook of Mathematical Functions, 9th edn. (Dover, New York, 1972), p. 897Google Scholar
  21. 21.
    G. Audi, A.H. Wapstra, Nucl. Phys. A 565, 1 (1993)ADSCrossRefGoogle Scholar
  22. 22.
    J.L. Flowers, B.W. Petley, Rep. Prog. Phys. 64, 1191 (2001)ADSCrossRefGoogle Scholar
  23. 23.
    S. Huzinaga, J. Chem. Phys. 42, 1293 (1965)ADSCrossRefGoogle Scholar
  24. 24.
    H. Margenau, N.R. Kestner, in Theory of Intermolecular Forces (Pergamon, Oxford, 1969), p. 178Google Scholar
  25. 25.
    W. Kolos, K. Szalewicz, H.J. Monkhorst, J. Chem. Phys. 84, 3278 (1986)ADSCrossRefGoogle Scholar
  26. 26.
    G. Corongiu, E. Clementi, J. Chem. Phys. 131, 034301 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    W. Thirring, in A Course in Mathematical Physics (Springer, Berlin, 1981), Vol. 3, p. 281Google Scholar
  28. 28.
    W.D. Davison, Y.C. Liew, J. Phys. B 5, 309 (1972)ADSCrossRefGoogle Scholar
  29. 29.
    P. Valiron, R. Gayet, R. McCarroll, F. Masnou-Seeuws, M. Philippe, J. Phys. B 12, 53 (1979)ADSCrossRefGoogle Scholar
  30. 30.
    R.A. Buckingham, M. Duparc, in Progress in international research on thermodynamic and transport properties (Academic, New York, 1962), p. 378Google Scholar
  31. 31.
    R.V. Miller, R.D. Present, J. Chem. Phys. 38, 1179 (1963)ADSCrossRefGoogle Scholar
  32. 32.
    G.H. Matsumoto, C.F. Bender, E.R. Davidson, J. Chem. Phys. 46, 402 (1967)ADSCrossRefGoogle Scholar
  33. 33.
    C. van Wullen, Ph.D. thesis, University of Bochum, 1992Google Scholar
  34. 34.
    C. van Wullen, W. Kutzelnigg, J. Chem. Phys. 104, 2330 (1996)ADSCrossRefGoogle Scholar
  35. 35.
    B.M. Axilrod, E. Teller, J. Chem. Phys. 11, 299 (1943)ADSCrossRefGoogle Scholar
  36. 36.
    E. Rittger, Mol. Phys. 69, 867 (1990)ADSCrossRefGoogle Scholar
  37. 37.
    R.J. Sadus, J.M. Prausnitz, J. Chem. Phys. 104, 4784 (1996)ADSCrossRefGoogle Scholar
  38. 38.
    R.J. Sadus, Fluid Phase Equilib. 144, 351 (1998)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.The AthenaeumLondonUK

Personalised recommendations