The European Physical Journal D

, Volume 62, Issue 3, pp 439–447 | Cite as

Influence of dephasing on the entanglement teleportation via a two-qubit Heisenberg XYZ system

  • H. Mohammadi
  • S. J. Akhtarshenas
  • F. Kheirandish
Regular Article

Abstract

We study the entanglement dynamics of an anisotropic two-qubit Heisenberg XYZ system in the presence of intrinsic decoherence. The usefulness of such a system for performance of the quantum teleportation protocol \(\mathcal{T}_0\) and entanglement teleportation protocol \(\mathcal{T}_1\) is also investigated. The results depend on the initial conditions and the parameters of the system. The roles of system parameters such as the inhomogeneity of the magnetic field b and the spin-orbit interaction parameter D, in entanglement dynamics and fidelity of teleportation, are studied for both product and maximally entangled initial states of the resource. We show that for the product and maximally entangled initial states, increasing D amplifies the effects of dephasing and hence decreases the asymptotic entanglement and fidelity of the teleportation. For a product initial state and specific interval of the magnetic field B, the asymptotic entanglement and hence the fidelity of teleportation can be improved by increasing B. The XY and XYZ Heisenberg systems provide a minimal resource entanglement, required for realizing efficient teleportation. Also, in the absence of the magnetic field, the degree of entanglement is preserved for the maximally entangled initial states \(\left| {\psi \left. {\left( 0 \right)} \right\rangle = \frac{1} {{\sqrt 2 }}\left( {\left| {\left. {00} \right\rangle \pm } \right|\left. {11} \right\rangle } \right)} \right.\). The same is true for the maximally entangled initial states \(\left| {\psi \left. {\left( 0 \right)} \right\rangle = \frac{1} {{\sqrt 2 }}\left( {\left| {\left. {01} \right\rangle \pm } \right|\left. {10} \right\rangle } \right)} \right.\), in the absence of spin-orbit interaction D and the inhomogeneity parameter b. Therefore, it is possible to perform quantum teleportation protocol \(\mathcal{T}_0\) and entanglement teleportation \(\mathcal{T}_1\), with perfect quality, by choosing a proper set of parameters and employing one of these maximally entangled robust states as the initial state of the resource.

Keywords

Entangle State Quantum Channel Quantum Teleportation Teleportation Protocol Decoherence Free Subspace 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.A. Neilsen, I.L. Chuang, Quantum computation and quantum information (Cambridge University Press, Cambridge, UK, 2004)Google Scholar
  2. 2.
    J. Audretsch, Entangled systems (Wiley-VCH Weinheim, 2007)Google Scholar
  3. 3.
    V. Vedral, Introduction to Quantum Information Science (Oxford University Press Inc., New York, 2006) Google Scholar
  4. 4.
    R.F. Werner, Phys. Rev. A 40, 4277 (1989) ADSCrossRefGoogle Scholar
  5. 5.
    J. Eisert, Entanglement in Information Theory, Ph.D. thesis, The University of Postdam, 2001 (unpublished) Google Scholar
  6. 6.
    C.H. Bennett, G. Brassard, C. Crepeau, R. Josza, A. Peres, W.K. Wooters, Phys. Rev. Lett. 70, 1895 (1993) MathSciNetADSMATHCrossRefGoogle Scholar
  7. 7.
    S. Popescu, Phys. Rev. Lett. 72, 797 (1994)MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    M. Horodecki, P. Horodecki, R. Horodecki, Phys. Rev. A 60, 1888 (1999) MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    G. Bowen, S. Bose, Phys. Rev. Lett. 87, 267901 (2001) ADSCrossRefGoogle Scholar
  10. 10.
    J. Lee, M.S. Kim, Phys. Rev. Lett. 84, 4236 (2000) ADSCrossRefGoogle Scholar
  11. 11.
    M. Schlosshauer, Decoherence and the quantum to classical transitions (Springer, 2007)Google Scholar
  12. 12.
    H.P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002)Google Scholar
  13. 13.
    F. Kheirandish, S.J. Akhtarshenas, H. Mohammadi, Eur. Phys. J. D 57, 129 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    H. Moya-Cessa, V. Buzek, M.S. Kim, P.L. Knight, Phys. Rev. A 48, 3900 (1993) ADSCrossRefGoogle Scholar
  15. 15.
    G.J. Milburn, Phys. Rev. A 44, 5401 (1991) MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    J. Xu, X. Zou, Phys. Rev. A 60, 4743 (1999) ADSCrossRefGoogle Scholar
  17. 17.
    J.L. Guo, H.S. Song, Phys. Scr. 78, 045002 (2008) ADSCrossRefGoogle Scholar
  18. 18.
    F. Kheirandish, S.J. Akhtarshenas, H. Mohammadi, Phys. Rev. A 77, 042309 (2008) ADSCrossRefGoogle Scholar
  19. 19.
    Y. Yeo, T. Liu, Y. Lu, Q. Yang, J. Phys. A 38, 3235 (2005) MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Z. He, Z. Xiong, Y. Zhang, Phys. Lett. A 354, 79 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    J.L. Guo, Y. Xia, H.S. Song, Opt. Commun. 281, 2326 (2008) ADSCrossRefGoogle Scholar
  22. 22.
    X. Wang, Phys. Rev. A 64, 012313 (2001) ADSCrossRefGoogle Scholar
  23. 23.
    X. Wang, H. Fu, A.I. Solomon, J. Phys. A 34, 11307 (2001) MathSciNetADSMATHCrossRefGoogle Scholar
  24. 24.
    H. Fu, A.I. Solomon, X. Wang, J. Phys. A 35, 4293 (2002) MathSciNetADSMATHCrossRefGoogle Scholar
  25. 25.
    D. Loss, D.P. Divincenzo, Phys. Rev. A 57, 120 (1998)ADSCrossRefGoogle Scholar
  26. 26.
    D. DiVincenzo, Phys. Rev. A 51, 1015 (1995) ADSCrossRefGoogle Scholar
  27. 27.
    W.A. Coish, D. Loss, e-print arXiv:cond-mat/0606550 Google Scholar
  28. 28.
    I. Dzyaloshinski, J. Phys. Chem. Sol. 4, 241 (1958)ADSCrossRefGoogle Scholar
  29. 29.
    T. Moriya, Phys. Rev. 117, 635 (1960) ADSCrossRefGoogle Scholar
  30. 30.
    T. Moriya, Phys. Rev. Lett. 4, 228 (1960)ADSCrossRefGoogle Scholar
  31. 31.
    T. Moriya, Phys. Rev. 120, 91 (1960)ADSCrossRefGoogle Scholar
  32. 32.
    R.C. Drumond, M.O. Terra Cunha, e-print arXiv: quant-ph/0809.4445Google Scholar
  33. 33.
    M.O. Terra Cunha, New J. Phys. 9, 237 (2007)ADSCrossRefMathSciNetGoogle Scholar
  34. 34.
    R. Josza, J. Mod. Opt. 41, 2315 (1994) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • H. Mohammadi
    • 1
  • S. J. Akhtarshenas
    • 1
  • F. Kheirandish
    • 1
  1. 1.Quantum Optics Group, Department of PhysicsUniversity of IsfahanIsfahanIran

Personalised recommendations