Skip to main content
Log in

Trapped electron coupled to superconducting devices

  • Topical issue: Hybrid Quantum Systems – New Perspectives on Quantum State Control
  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We propose to couple a trapped single electron to superconducting structures located at a variable distance from the electron. The electron is captured in a cryogenic Penning trap using electric fields and a static magnetic field in the tesla range. Measurements on the electron will allow investigating the properties of the superconductor such as vortex structure, damping and decoherence. We propose to couple a superconducting microwave resonator to the electron in order to realize a circuit QED-like experiment, as well as to couple superconducting Josephson junctions or superconducting quantum interferometers (SQUIDs) to the electron. The electron may also be coupled to a vortex which is situated in a double well potential, realized by nearby pinning centers in the superconductor, acting as a quantum mechanical two level system that can be controlled by a transport current tilting the double well potential. The electron may also be coupled to a single vortex, thus hybridizing an elementary excitation of a superconductor and an elementary particle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Sörensen, C. van der Wal, L. Childress, M. Lukin, Phys. Rev. Lett. 92, 063601 (2004)

    Article  ADS  Google Scholar 

  2. L. Tian, P. Rabl, R. Blatt, P. Zoller, Phys. Rev. Lett. 92, 247902 (2004)

    Article  ADS  Google Scholar 

  3. N. Daniilidis, T. Lee, R. Clark, S. Narayanan, H. Häffner, J. Phys. B 42, 144012 (2009)

    Article  Google Scholar 

  4. S. Gleyzes, S. Kuhr, Ch. Guerlin, J. Bernu, S. Delglise, U. Hoff, M. Brune, J.-M. Raimond, S. Haroche, Nature 446, 297 (2007)

    Article  ADS  Google Scholar 

  5. T. Mukai, C. Hufnagel, A. Kasper, T. Meno, A. Tsukada, K. Semba, F. Shimizu, Phys. Rev. Lett. 98, 260407 (2007)

    Article  ADS  Google Scholar 

  6. T. Nirrengarten, A. Qarry, C. Roux, A. Emmert, G. Nogues, M. Brune, J. Raimond, S. Haroche, Phys. Rev. Lett. 97, 200405 (2006)

    Article  ADS  Google Scholar 

  7. B. Kasch , H. Hattermann , D. Cano , T.E. Judd , S. Scheel , C. Zimmermann , R. Kleiner , D. Koelle , J. Fortágh , New J. Phys. 12, 065024 (2010)

    Article  ADS  Google Scholar 

  8. D. Cano , B. Kasch , H. Hattermann , R. Kleiner , C. Zimmermann , D. Koelle , J. Fortágh , Phys. Rev. Lett. 101, 183006 (2008)

    Article  ADS  Google Scholar 

  9. T. Müller, B. Zhang, R. Fermani, K.S. Chan, M.J. Lin, R. Dumke, Phys. Rev. A 81, 053624 (2010)

    Article  ADS  Google Scholar 

  10. Shannon X. Wang , Yufei Ge , Jaroslaw Labaziewicz, Eric Dauler, Karl Berggren, Isaac L. Chuang, Appl. Phys. Lett. 97, 244102 (2010)

    Article  ADS  Google Scholar 

  11. B. Grüner , M. Jag , A. Stibor , G. Visanescu , M. Häffner , D. Kern , A. Günther , J. Fortágh , Phys. Rev. A 80, 063422 (2009)

    Article  ADS  Google Scholar 

  12. A. Wallraff, D.I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S.M. Girvin, R.J. Schoelkopf, Nature 431, 162 (2004)

    Article  ADS  Google Scholar 

  13. A. Andrá , D. DeMille, J.M. Doyle, M.D. Lukin, S.E. Maxwell, P. Rabl, R.J. Schoelkopf, P. Zoller, Nature Phys. 2, 636 (2006)

    Article  ADS  Google Scholar 

  14. J. Verdú, H. Zoubi, Ch. Koller, J. Majer, H. Ritsch, J. Schmiedmayer, Phys. Rev. Lett. 103, 043603 (2009)

    Article  ADS  Google Scholar 

  15. Y. Kubo, F.R. Ong, P. Bertet, D. Vion, V. Jacques, D. Zheng, A. Dreau, J.F. Roch, A. Auffeves, F. Jelezko, J. Wrachtrup, M.F. Barthe, D. Esteve, Phys. Rev. Lett. 105, 140502 (2010)

    Article  ADS  Google Scholar 

  16. D.I. Schuster, A.P. Sears, E. Ginossar, L. DiCarlo, L. Frunzio, J.J.L. Morton, H. Wu, G.A.D. Briggs, R. Schoelkopf, Phys. Rev. Lett. 105, 140501 (2010)

    Article  ADS  Google Scholar 

  17. M. Neeley , M. Ansmann , R.C. Bialczak , M. Hofheinz , N. Katz , E. Lucero , A. O’Connell , H. Wang, A.N. Cleland, J.M. Martinis, Nature Phys. 4, 523 (2008)

    Article  Google Scholar 

  18. A. Lupascu, P. Bertet, E.F.C. Driessen, C.J.P.M. Harmans, J.E. Mooij, Phys. Rev. B 80, 172506 (2009)

    Article  ADS  Google Scholar 

  19. P. Bushev, C. Müller, J. Cole, J. Lisenfeld, A. Lukashenko, A. Shnirman, A.V. Ustinov, Phys. Rev. B 82, 134530 (2010)

    Article  ADS  Google Scholar 

  20. P. Antohi, D. Schuster, G. Akselrod, J. Labaziewicz, Y. Ge, Z. Lin, W. Bakr, I. Chuand, Rev. Sci. Instrum. 80, 013103 (2009)

    Article  ADS  Google Scholar 

  21. J. Labaziewicz , Y. Ge , D. Leibrandt , S. Wang . R. Shewmon, I. Chuang, Phys. Rev. Lett. 101, 180602 (2008)

    Article  ADS  Google Scholar 

  22. L.S. Brown, G. Gabrielse, Rev. Mod. Phys. 58, 233 (1986)

    Article  ADS  Google Scholar 

  23. K. Hermanspahn, W. Quint, S. Stahl, M. Tönges, G. Bollen, H.J. Kluge, R. Ley, R. Mann, G. Werth, Hyperfine Interact. 99, 91 (1996)

    Article  ADS  Google Scholar 

  24. H. Haeffner, T. Beier, N. Hermanspahn, H.J. Kluge, W. Quint, S. Stahl, J. Verdú, G. Werth, Phys. Rev. Lett. 85, 5308 (2000)

    Article  ADS  Google Scholar 

  25. Th. Beier, H. Haeffner, N. Hermanspahn, S. Karshenboim, H.-J. Kluge, W. Quint, S. Stahl, J. Verdú, G. Werth, Phys. Rev. Lett. 88, 011603 (2002)

    Article  ADS  Google Scholar 

  26. D. Hanneke, S. Fogwell, G. Gabrielse, Phys. Rev. Lett. 100, 120801 (2008)

    Article  ADS  Google Scholar 

  27. G. Ciaramicoli, I. Marzoli, P. Tombesi, Phys. Rev. Lett. 91, 017901 (2003)

    Article  ADS  Google Scholar 

  28. P. Bushev, S. Stahl, R. Natali, G. Marx, E. Stachowska, G. Werth, M. Hellwig, F. Schmidt-Kaler, Eur. Phys. J. D 50, 97 (2008)

    Article  ADS  Google Scholar 

  29. L. Lamata, D. Porras, J.I. Cirac, J. Goldman, G. Gabrielse, Phys. Rev. A 81, 022301 (2010)

    Article  ADS  Google Scholar 

  30. J. Goldman, G. Gabrielse, Phys. Rev. A 81, 052335 (2010)

    Article  ADS  Google Scholar 

  31. J. Verdú, S. Kreim, K. Blaum, H. Kracke, W. Quint, S. Ulmer, J. Walz, New J. Phys. 10, 103009 (2008)

    Article  ADS  Google Scholar 

  32. M. Hellwig, A. Bautista-Salvador, K. Singer, G. Werth, F. Schmidt-Kaler, New J. Phys. 12, 065019 (2010)

    Article  ADS  Google Scholar 

  33. K. Singer, U. Poschinger, M. Murphy, P. Ivanov, F. Ziesel, T. Calarco, F. Schmidt-Kaler, Rev. Mod. Phys. (2010), in press

  34. M.W. Pospiezalski, IEEE Microw. Mag. 6, 62 (2005)

    Article  Google Scholar 

  35. N. Oukhanski, E. Hoenig, Appl. Phys. Lett. 85, 2956 (2004)

    Article  ADS  Google Scholar 

  36. D.I. Schuster, A. Fragner, M.I. Dykman, S.A. Lyon, R.J. Schoelkopf, Phys. Rev. Lett. 105, 040503 (2010)

    Article  ADS  Google Scholar 

  37. B. Odom , D. Hanneke , B. D’Urso , G. Gabrielse, Phys. Rev. Lett. 97, 030801 (2006)

    Article  ADS  Google Scholar 

  38. J.H. Cole, L.C.L. Hollenberg, Nanotechnology 20, 495401 (2009)

    Article  Google Scholar 

  39. M. Kemmler, C. Gürlich, A. Sterck, H. Pöhler, M. Neuhaus, M. Siegel, R. Kleiner, D. Koelle, Phys. Rev. Lett. 97, 147003 (2006)

    Article  ADS  Google Scholar 

  40. M. Baert, V.V. Metlushko, R. Jonckheere, V.V. Moshchalkov, Y. Bruynseraede, Phys. Rev. Lett. 74, 3269 (1995)

    Article  ADS  Google Scholar 

  41. R. Woerdenweber, P. Dymashevski, V.R. Misko, Phys. Rev. B 69, 184504 (2004)

    Article  ADS  Google Scholar 

  42. J. Eisenmenger, M. Oettinger, C. Pfahler, A. Plettl, P. Walther, P. Ziemann, Phys. Rev. B. 75, 144514 (2007)

    Article  ADS  Google Scholar 

  43. M. Häffner , M. Kemmler , R. Löffler , B. Vega Gómez , M. Fleischer, R. Kleiner, D. Koelle, D.P. Kern, Microelectron. Eng. 86, 895 (2009)

    Article  Google Scholar 

  44. W. Wernsdörfer, D. Mailly, A. Benoit, J. Appl. Phys. 87, 5094 (2000)

    Article  ADS  Google Scholar 

  45. L. Hao, J.C. Macfarlane, J.C. Gallop, D. Cox, J. Beyer, D. Drung, T. Schurig, Appl. Phys. Lett, 92, 192507 (2008)

    Article  ADS  Google Scholar 

  46. V. Adivarahan , S. Wu , A. Chitnis , R. Pachipulusu , V. Mandavilli , M. Shatalov , J.P. Zhang , M. Asif Khan , G. Tamulaitis , A Sereika , I. Yilmaz, M.S. Shur, R. Gaska, Appl. Phys. Lett. 85, 2956 (2004)

    Article  Google Scholar 

  47. G. Hammer, S. Wuensch, M. Roesch, K. Ilin, E. Crocoll, M. Siegel, Supercond. Sci. Technol. 20, 408 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Bushev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bushev, P., Bothner, D., Nagel, J. et al. Trapped electron coupled to superconducting devices. Eur. Phys. J. D 63, 9–16 (2011). https://doi.org/10.1140/epjd/e2011-10517-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2011-10517-6

Keywords

Navigation