Advertisement

The European Physical Journal D

, Volume 63, Issue 1, pp 9–16 | Cite as

Trapped electron coupled to superconducting devices

  • P. Bushev
  • D. Bothner
  • J. Nagel
  • M. Kemmler
  • K. B. Konovalenko
  • A. Lörincz
  • K. Ilin
  • M. Siegel
  • D. Koelle
  • R. Kleiner
  • F. Schmidt-Kaler
Topical issue: Hybrid Quantum Systems – New Perspectives on Quantum State Control Regular Article

Abstract

We propose to couple a trapped single electron to superconducting structures located at a variable distance from the electron. The electron is captured in a cryogenic Penning trap using electric fields and a static magnetic field in the tesla range. Measurements on the electron will allow investigating the properties of the superconductor such as vortex structure, damping and decoherence. We propose to couple a superconducting microwave resonator to the electron in order to realize a circuit QED-like experiment, as well as to couple superconducting Josephson junctions or superconducting quantum interferometers (SQUIDs) to the electron. The electron may also be coupled to a vortex which is situated in a double well potential, realized by nearby pinning centers in the superconductor, acting as a quantum mechanical two level system that can be controlled by a transport current tilting the double well potential. The electron may also be coupled to a single vortex, thus hybridizing an elementary excitation of a superconductor and an elementary particle.

Keywords

Vortex Single Electron Josephson Junction Ring Electrode Substrate Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Sörensen, C. van der Wal, L. Childress, M. Lukin, Phys. Rev. Lett. 92, 063601 (2004) ADSCrossRefGoogle Scholar
  2. 2.
    L. Tian, P. Rabl, R. Blatt, P. Zoller, Phys. Rev. Lett. 92, 247902 (2004) ADSCrossRefGoogle Scholar
  3. 3.
    N. Daniilidis, T. Lee, R. Clark, S. Narayanan, H. Häffner, J. Phys. B 42, 144012 (2009) CrossRefGoogle Scholar
  4. 4.
    S. Gleyzes, S. Kuhr, Ch. Guerlin, J. Bernu, S. Delglise, U. Hoff, M. Brune, J.-M. Raimond, S. Haroche, Nature 446, 297 (2007) ADSCrossRefGoogle Scholar
  5. 5.
    T. Mukai, C. Hufnagel, A. Kasper, T. Meno, A. Tsukada, K. Semba, F. Shimizu, Phys. Rev. Lett. 98, 260407 (2007) ADSCrossRefGoogle Scholar
  6. 6.
    T. Nirrengarten, A. Qarry, C. Roux, A. Emmert, G. Nogues, M. Brune, J. Raimond, S. Haroche, Phys. Rev. Lett. 97, 200405 (2006) ADSCrossRefGoogle Scholar
  7. 7.
    B. Kasch , H. Hattermann , D. Cano , T.E. Judd , S. Scheel , C. Zimmermann , R. Kleiner , D. Koelle , J. Fortágh , New J. Phys. 12, 065024 (2010) ADSCrossRefGoogle Scholar
  8. 8.
    D. Cano , B. Kasch , H. Hattermann , R. Kleiner , C. Zimmermann , D. Koelle , J. Fortágh , Phys. Rev. Lett. 101, 183006 (2008) ADSCrossRefGoogle Scholar
  9. 9.
    T. Müller, B. Zhang, R. Fermani, K.S. Chan, M.J. Lin, R. Dumke, Phys. Rev. A 81, 053624 (2010) ADSCrossRefGoogle Scholar
  10. 10.
    Shannon X. Wang , Yufei Ge , Jaroslaw Labaziewicz, Eric Dauler, Karl Berggren, Isaac L. Chuang, Appl. Phys. Lett. 97, 244102 (2010) ADSCrossRefGoogle Scholar
  11. 11.
    B. Grüner , M. Jag , A. Stibor , G. Visanescu , M. Häffner , D. Kern , A. Günther , J. Fortágh , Phys. Rev. A 80, 063422 (2009) ADSCrossRefGoogle Scholar
  12. 12.
    A. Wallraff, D.I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S.M. Girvin, R.J. Schoelkopf, Nature 431, 162 (2004) ADSCrossRefGoogle Scholar
  13. 13.
    A. Andrá , D. DeMille, J.M. Doyle, M.D. Lukin, S.E. Maxwell, P. Rabl, R.J. Schoelkopf, P. Zoller, Nature Phys. 2, 636 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    J. Verdú, H. Zoubi, Ch. Koller, J. Majer, H. Ritsch, J. Schmiedmayer, Phys. Rev. Lett. 103, 043603 (2009) ADSCrossRefGoogle Scholar
  15. 15.
    Y. Kubo, F.R. Ong, P. Bertet, D. Vion, V. Jacques, D. Zheng, A. Dreau, J.F. Roch, A. Auffeves, F. Jelezko, J. Wrachtrup, M.F. Barthe, D. Esteve, Phys. Rev. Lett. 105, 140502 (2010) ADSCrossRefGoogle Scholar
  16. 16.
    D.I. Schuster, A.P. Sears, E. Ginossar, L. DiCarlo, L. Frunzio, J.J.L. Morton, H. Wu, G.A.D. Briggs, R. Schoelkopf, Phys. Rev. Lett. 105, 140501 (2010) ADSCrossRefGoogle Scholar
  17. 17.
    M. Neeley , M. Ansmann , R.C. Bialczak , M. Hofheinz , N. Katz , E. Lucero , A. O’Connell , H. Wang, A.N. Cleland, J.M. Martinis, Nature Phys. 4, 523 (2008)CrossRefGoogle Scholar
  18. 18.
    A. Lupascu, P. Bertet, E.F.C. Driessen, C.J.P.M. Harmans, J.E. Mooij, Phys. Rev. B 80, 172506 (2009) ADSCrossRefGoogle Scholar
  19. 19.
    P. Bushev, C. Müller, J. Cole, J. Lisenfeld, A. Lukashenko, A. Shnirman, A.V. Ustinov, Phys. Rev. B 82, 134530 (2010) ADSCrossRefGoogle Scholar
  20. 20.
    P. Antohi, D. Schuster, G. Akselrod, J. Labaziewicz, Y. Ge, Z. Lin, W. Bakr, I. Chuand, Rev. Sci. Instrum. 80, 013103 (2009) ADSCrossRefGoogle Scholar
  21. 21.
    J. Labaziewicz , Y. Ge , D. Leibrandt , S. Wang . R. Shewmon, I. Chuang, Phys. Rev. Lett. 101, 180602 (2008) ADSCrossRefGoogle Scholar
  22. 22.
    L.S. Brown, G. Gabrielse, Rev. Mod. Phys. 58, 233 (1986)ADSCrossRefGoogle Scholar
  23. 23.
    K. Hermanspahn, W. Quint, S. Stahl, M. Tönges, G. Bollen, H.J. Kluge, R. Ley, R. Mann, G. Werth, Hyperfine Interact. 99, 91 (1996)ADSCrossRefGoogle Scholar
  24. 24.
    H. Haeffner, T. Beier, N. Hermanspahn, H.J. Kluge, W. Quint, S. Stahl, J. Verdú, G. Werth, Phys. Rev. Lett. 85, 5308 (2000) ADSCrossRefGoogle Scholar
  25. 25.
    Th. Beier, H. Haeffner, N. Hermanspahn, S. Karshenboim, H.-J. Kluge, W. Quint, S. Stahl, J. Verdú, G. Werth, Phys. Rev. Lett. 88, 011603 (2002) ADSCrossRefGoogle Scholar
  26. 26.
    D. Hanneke, S. Fogwell, G. Gabrielse, Phys. Rev. Lett. 100, 120801 (2008) ADSCrossRefGoogle Scholar
  27. 27.
    G. Ciaramicoli, I. Marzoli, P. Tombesi, Phys. Rev. Lett. 91, 017901 (2003) ADSCrossRefGoogle Scholar
  28. 28.
    P. Bushev, S. Stahl, R. Natali, G. Marx, E. Stachowska, G. Werth, M. Hellwig, F. Schmidt-Kaler, Eur. Phys. J. D 50, 97 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    L. Lamata, D. Porras, J.I. Cirac, J. Goldman, G. Gabrielse, Phys. Rev. A 81, 022301 (2010) ADSCrossRefGoogle Scholar
  30. 30.
    J. Goldman, G. Gabrielse, Phys. Rev. A 81, 052335 (2010) ADSCrossRefGoogle Scholar
  31. 31.
    J. Verdú, S. Kreim, K. Blaum, H. Kracke, W. Quint, S. Ulmer, J. Walz, New J. Phys. 10, 103009 (2008) ADSCrossRefGoogle Scholar
  32. 32.
    M. Hellwig, A. Bautista-Salvador, K. Singer, G. Werth, F. Schmidt-Kaler, New J. Phys. 12, 065019 (2010) ADSCrossRefGoogle Scholar
  33. 33.
    K. Singer, U. Poschinger, M. Murphy, P. Ivanov, F. Ziesel, T. Calarco, F. Schmidt-Kaler, Rev. Mod. Phys. (2010), in pressGoogle Scholar
  34. 34.
    M.W. Pospiezalski, IEEE Microw. Mag. 6, 62 (2005)CrossRefGoogle Scholar
  35. 35.
    N. Oukhanski, E. Hoenig, Appl. Phys. Lett. 85, 2956 (2004) ADSCrossRefGoogle Scholar
  36. 36.
    D.I. Schuster, A. Fragner, M.I. Dykman, S.A. Lyon, R.J. Schoelkopf, Phys. Rev. Lett. 105, 040503 (2010) ADSCrossRefGoogle Scholar
  37. 37.
    B. Odom , D. Hanneke , B. D’Urso , G. Gabrielse, Phys. Rev. Lett. 97, 030801 (2006) ADSCrossRefGoogle Scholar
  38. 38.
    J.H. Cole, L.C.L. Hollenberg, Nanotechnology 20, 495401 (2009) CrossRefGoogle Scholar
  39. 39.
    M. Kemmler, C. Gürlich, A. Sterck, H. Pöhler, M. Neuhaus, M. Siegel, R. Kleiner, D. Koelle, Phys. Rev. Lett. 97, 147003 (2006) ADSCrossRefGoogle Scholar
  40. 40.
    M. Baert, V.V. Metlushko, R. Jonckheere, V.V. Moshchalkov, Y. Bruynseraede, Phys. Rev. Lett. 74, 3269 (1995) ADSCrossRefGoogle Scholar
  41. 41.
    R. Woerdenweber, P. Dymashevski, V.R. Misko, Phys. Rev. B 69, 184504 (2004) ADSCrossRefGoogle Scholar
  42. 42.
    J. Eisenmenger, M. Oettinger, C. Pfahler, A. Plettl, P. Walther, P. Ziemann, Phys. Rev. B. 75, 144514 (2007) ADSCrossRefGoogle Scholar
  43. 43.
    M. Häffner , M. Kemmler , R. Löffler , B. Vega Gómez , M. Fleischer, R. Kleiner, D. Koelle, D.P. Kern, Microelectron. Eng. 86, 895 (2009)CrossRefGoogle Scholar
  44. 44.
    W. Wernsdörfer, D. Mailly, A. Benoit, J. Appl. Phys. 87, 5094 (2000) ADSCrossRefGoogle Scholar
  45. 45.
    L. Hao, J.C. Macfarlane, J.C. Gallop, D. Cox, J. Beyer, D. Drung, T. Schurig, Appl. Phys. Lett, 92, 192507 (2008) ADSCrossRefGoogle Scholar
  46. 46.
    V. Adivarahan , S. Wu , A. Chitnis , R. Pachipulusu , V. Mandavilli , M. Shatalov , J.P. Zhang , M. Asif Khan , G. Tamulaitis , A Sereika , I. Yilmaz, M.S. Shur, R. Gaska, Appl. Phys. Lett. 85, 2956 (2004) CrossRefGoogle Scholar
  47. 47.
    G. Hammer, S. Wuensch, M. Roesch, K. Ilin, E. Crocoll, M. Siegel, Supercond. Sci. Technol. 20, 408 (2007)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • P. Bushev
    • 1
  • D. Bothner
    • 2
  • J. Nagel
    • 2
  • M. Kemmler
    • 2
  • K. B. Konovalenko
    • 2
  • A. Lörincz
    • 3
  • K. Ilin
    • 3
  • M. Siegel
    • 3
  • D. Koelle
    • 2
  • R. Kleiner
    • 2
  • F. Schmidt-Kaler
    • 4
  1. 1.Physikalisches Institut, Karlsruher Institut für TechnologieKarlsruheGermany
  2. 2.Physikalisches Institut and Center for Collective Quantum Phenomena, Universität TübingenTübingenGermany
  3. 3.Institut für Mikro- und Nanoelektronische Systeme, Karlsruher Institut für TechnologieKarlsruheGermany
  4. 4.Institut für Physik, QUANTUM, Universität MainzMainzGermany

Personalised recommendations