Skip to main content
Log in

Integrability breakdown in longitudinaly trapped, one-dimensional bosonic gases

  • Regular Article
  • Bose-Einstein condensates
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

A system of identical bosons with short-range (contact) interactions is studied. Their motion is confined to one dimension by a tight lateral trapping potential and, additionally, subject to a weak harmonic confinement in the longitudinal direction. Finite delay time associated with penetration of quantum particles through each other in the course of a pairwise one-dimensional collision in the presence of the longitudinal potential makes the system non-integrable and, hence, provides a mechanism for relaxation to thermal equilibrium. To analyse this effect quantitatively in the limit of a non-degenerate gas, we develop a system of kinetic equations and solve it for small-amplitude monopole oscillations of the gas. The obtained damping rate is long enough to be neglected in a realistic cold-atom experiment, and therefore longitudinal trapping does not hinder integrable dynamics of atomic gases in the 1D regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V.N. Popov, Functional Integrals in Quantum Field Theory and Statistical Physics (Reidel, Dordrecht, 1983)

    Chapter  Google Scholar 

  2. T. Giamarchi, Quantum Physics in One Dimension (Oxford University Press, Oxford, 2003)

  3. H.B. Thacker, Rev. Mod. Phys. 53, 253 (1981)

    Article  ADS  Google Scholar 

  4. V.A. Yurovsky, M. Olshanii, D.S. Weiss, Adv. At. Mol. Opt. Phys. 55, 61 (2008)

    Article  ADS  Google Scholar 

  5. M. Rigol, V. Dunjko, V. Yurovsky, M. Olshanii, Phys. Rev. Lett. 98, 050405 (2007)

    Article  ADS  Google Scholar 

  6. C. Kollath, A.M. Läuchli, E. Altman, Phys. Rev. Lett. 98, 180601 (2007)

    Article  ADS  Google Scholar 

  7. D. Muth, B. Schmidt, M. Fleischhauer, New J. Phys. 12, 083065 (2010)

    Article  ADS  Google Scholar 

  8. M. Srednicki, Phys. Rev. E 50, 888 (1994)

    Article  ADS  Google Scholar 

  9. M. Rigol, V. Dunjko, M. Olshanii, Nature 452, 854 (2008)

    Article  ADS  Google Scholar 

  10. E.H. Lieb, W. Liniger, Phys. Rev. 130, 1605 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  11. E.H. Lieb, Phys. Rev. 130, 1616 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  12. T. Kinoshita, T.R. Wenger, D.S. Weiss, Science 305, 1125 (2004)

    Article  ADS  Google Scholar 

  13. O. Morsch, M. Oberthaler, Rev. Mod. Phys. 78, 179 (2006)

    Article  ADS  Google Scholar 

  14. R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier, J. Schmiedmayer, Phys. Rev. Lett. 84, 4749 (2000)

    Article  ADS  Google Scholar 

  15. W. Hänsel, P. Hommelhoff, T.W. Hänsch, J. Reichel, Nature 413, 498 (2001)

    Article  ADS  Google Scholar 

  16. Y. Shin, C. Sanner, G.-B. Jo, T.A. Pasquini, M. Saba, W. Ketterle, D.E. Pritchard, M. Vengalattore, M. Prentiss, Phys. Rev. A 72, 021604(R) (2005)

    Article  ADS  Google Scholar 

  17. J. Fortágh, C. Zimmermann, Rev. Mod. Phys. 79, 235 (2007)

    Article  ADS  Google Scholar 

  18. T. Kinoshita, T. Wenger, D.S. Weiss, Nature 440, 900 (2006)

    Article  ADS  Google Scholar 

  19. S. Hofferberth, I. Lesanovsky, T. Schumm, A. Imambekov, V. Gritsev, E. Demler, J. Schmiedmayer, Nature Phys. 4, 489 (2008)

    Article  ADS  Google Scholar 

  20. P. Krüger, S. Hofferberth, I.E. Mazets, I. Lesanovsky, J. Schmiedmayer, Phys. Rev. Lett. 105, 265302 (2010)

    Article  ADS  Google Scholar 

  21. L. Salasnich, A. Parola, L. Reatto, Phys. Rev. A 65, 043614 (2002)

    Article  ADS  Google Scholar 

  22. A. Muryshev, G.V. Shlyapnikov, W. Ertmer, K. Sengstock, M. Lewenstein, Phys. Rev. Lett. 89, 110401 (2002)

    Article  ADS  Google Scholar 

  23. I.E. Mazets, T. Schumm, J. Schmiedmayer, Phys. Rev. Lett. 100, 210403 (2008)

    Article  ADS  Google Scholar 

  24. I.E. Mazets, J. Schmiedmayer, New J. Phys. 12, 055023 (2010)

    Article  ADS  Google Scholar 

  25. S. Tan, M. Pustilnik, L.I. Glazman, Phys. Rev. Lett. 105, 090404 (2010)

    Article  ADS  Google Scholar 

  26. I.E. Mazets, J. Schmiedmayer, Phys. Rev. A 79, 061603(R) (2009)

    Article  ADS  Google Scholar 

  27. A. Minguzzi, D.M. Gangardt, Phys. Rev. Lett. 94, 240404 (2005)

    Article  ADS  Google Scholar 

  28. D. Guéry-Odelin, F. Zambelli, J. Dalibard, S. Stringari, Phys. Rev. A 60, 4851 (1999)

    Article  ADS  Google Scholar 

  29. E.P. Wigner, Phys. Rev. 98, 145 (1955)

    Article  ADS  MathSciNet  Google Scholar 

  30. V. Giovangigli, Multicomponent Flow Modeling (Birkhäuser, Boston, 1999)

    Book  Google Scholar 

  31. L.P. Pitaevskii, E.M. Lifshitz, Physical Kinetics (Butterworth-Heinemann, Oxford, 1981)

  32. P. Pedri, D. Guéry-Odelin, S. Stringari, Phys. Rev. A 68, 043608 (2003)

    Article  ADS  Google Scholar 

  33. M. Olshanii, Phys. Rev. Lett. 81, 938 (1998)

    Article  ADS  Google Scholar 

  34. S. Stringari, Phys. Rev. Lett. 77, 2360 (1996)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. E. Mazets.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazets, I.E. Integrability breakdown in longitudinaly trapped, one-dimensional bosonic gases. Eur. Phys. J. D 65, 43–47 (2011). https://doi.org/10.1140/epjd/e2010-10637-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2010-10637-5

Keywords

Navigation