The European Physical Journal D

, Volume 61, Issue 3, pp 587–592 | Cite as

Sputter yields of Mo, Ti, W, Al, Ag under xenon ion incidence

  • M. Tartz
  • T. Heyn
  • C. Bundesmann
  • C. Zimmermann
  • H. Neumann
Article

Abstract.

The sputter yield is an important material parameter not only for various surface treatment techniques, but also for electric spacecraft propulsion. Many satellite or thruster components might be subject of erosion due to energetic and/or related secondary ions. In order to estimate the lifetime of these components the sputter yield under xenon ion incidence has to be known in dependence on ion energy and incidence angle, mainly in the low energy region (i.e. below 1500 eV). However, for many materials related to electric propulsion the supply of sputter yield data in literature is quite poor. Therefore, in this study the sputter yields of molybdenum, titanium, tungsten, silver and aluminium was investigated under xenon ion incidence.

Keywords

Electric Propulsion Stop Cross Section Grid Material Surface Treatment Technique Important Material Parameter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sputtering By Particle Bombardment, Topics in Applied Physics, edited by R. Behrisch, W. Eckstein (Springer, Berlin, 2007), Vol. 110 Google Scholar
  2. 2.
    P.J. Wilbur, V.K. Rawlin, J.R. Beattie, J. Propuls. Power 14, 708 (1998) CrossRefGoogle Scholar
  3. 3.
    M. Tartz, E. Hartmann, H. Neumann, Rev. Sci. Instrum. 79, 02B905 (2008) Google Scholar
  4. 4.
    M. Tartz, H. Neumann, Plasma Process. Polym. 4, S633 (2007) CrossRefGoogle Scholar
  5. 5.
    M. Zeuner, F. Scholze, B. Dathe, H. Neumann, Surf. Coat. Technol. 142-144, 39 (2001) CrossRefGoogle Scholar
  6. 6.
    D. Rapp, W.E. Francis, J. Chem. Phys. 37, 2631 (1962) ADSCrossRefGoogle Scholar
  7. 7.
    B.A. Brusilovsky, Appl. Phys. A 50, 111 (1990) ADSCrossRefGoogle Scholar
  8. 8.
    A.J. Ferron, E.V. Alonso, R.A. Baragiola, A. Oliva-Florio, J. Phys. D 14, 1707 (1981) ADSCrossRefGoogle Scholar
  9. 9.
    C. Garcia-Rosales, W. Eckstein, J. Roth, J. Nucl. Mat. 218, 8 (1994) CrossRefGoogle Scholar
  10. 10.
    Y. Yamamura, Y. Itikawa, N. Itoh, Institute of Plasma Physics, Nagoya University, Report IPPJ-AM-26 Google Scholar
  11. 11.
    D. Rosenberg, G.K. Wehner, J. Appl. Phys. 33, 1842 (1962) ADSCrossRefGoogle Scholar
  12. 12.
    C.H. Weijsenfeld, Philips Research Reports Suppl. No. 2, 1967 Google Scholar
  13. 13.
    S. Bhattacharjee, J. Zhang, V. Shutthanandan, P.K. Ray, N.R. Shivaparan, R.J. Smith, Nucl. Instr. Methods B 129, 123 (1997) ADSCrossRefGoogle Scholar
  14. 14.
    P.C. Zalm, L.J. Beckers, F.H.M. Sanders, Nucl. Instrum. Methods Phys. Res. 209, 561 (1983) CrossRefGoogle Scholar
  15. 15.
    J.J. Blandino, D.G. Goodwin, C.E. Garner, Proc. 32nd Joint Propulsion Conf. (1996), paper AIAA 96-3203 Google Scholar
  16. 16.
    A.P. Yalin, J.D. Williams, V. Surla, K.A. Zoerb, J. Phys. D 40, 3194 (2007) ADSCrossRefGoogle Scholar
  17. 17.
    R. Doerner, D. Goebel, J. Appl. Phys. 93, 5816 (2003) ADSCrossRefGoogle Scholar
  18. 18.
    R.D. Kolasinski, Proc. 41st Joint Propulsion Conf. (2005), paper AIAA-2005-3526 Google Scholar
  19. 19.
    J.D. Williams, M.M. Gardner, M.L. Johnson, P.J. Wilbur, Proc. 28th Int. Electric Propulsion Conf. (2003), paper IEPC-2003-130 Google Scholar
  20. 20.
    R.V. Stuart, G.K. Wehner, J. Appl. Phys. 33, 2345 (1962) ADSCrossRefGoogle Scholar
  21. 21.
    H.F. Winters, D. Horne, Phys. Rev. B 10, 55 (1974) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • M. Tartz
    • 1
  • T. Heyn
    • 1
  • C. Bundesmann
    • 1
  • C. Zimmermann
    • 2
  • H. Neumann
    • 1
  1. 1.Leibniz-Institut für Oberflächenmodifzierung e.V.LeipzigGermany
  2. 2.EADS AstriumMunichGermany

Personalised recommendations