Advertisement

The European Physical Journal D

, Volume 61, Issue 2, pp 373–380 | Cite as

Error cancellation in the semiclassical calculation of the scattering length

  • M. J. Jamieson
  • H. Ouerdane
Article

Abstract.

We investigate the effects of two approximations concerning long range dispersion forces that are made in the derivation of the semiclassical formula for the scattering length of a pair of neutral atoms. We demonstrate numerically, using a published model interaction potential for a pair of Cs atoms in the \(^3{\rm\Sigma}_{\rm u}^+\) molecular state, that the subsequent long range errors tend to cancel and we show, from an approximate analytical relationship, that the first order errors do indeed largely cancel. We suggest a hybrid method that combines quantum mechanical and semiclassical calculations. We explore its use in finding the scattering lengths of 7Li atoms and 133Cs atoms interacting via the X\(^1{\rm\Sigma}^+\) and a\(^3{\rm\Sigma}^+\) molecular potentials and we use it to demonstrate that the semiclassical formula fails for cold collisions of H atoms in the X\(^1{\rm\Sigma}_{\rm g}^+\) molecular state because of the long range errors rather than because of inadequacies in describing the motion over the potential well semiclassically.

Keywords

Quantum Mechanical Calculation Scattering Length Order Error Scatter Length 133Cs Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N.F. Mott, H.S.W. Massey, The Theory of Atomic Collisions (Oxford University Press, Oxford, 1965) Google Scholar
  2. 2.
    G.F. Gribakin, V.V. Flambaum, Phys. Rev. A 48, 546 (1993) CrossRefADSGoogle Scholar
  3. 3.
    M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions, NBS Appl. Math. Series - 55, 10th edn. (US Government Printing Office, Washington DC, 1972) Google Scholar
  4. 4.
    F. Calogero, Variable Phase Approach to Potential Scattering (Academic Press, New York, 1967) Google Scholar
  5. 5.
    H. Ouerdane, M.J. Jamieson, D. Vrinceanu, M.J. Cavagnero, J. Phys. B 36, 4055 (2003) CrossRefADSGoogle Scholar
  6. 6.
    R. Smytkowski, J. Phys. A 28, 7333 (1995) CrossRefMathSciNetADSGoogle Scholar
  7. 7.
    M.J. Jamieson, A. Dalgarno, J. Phys. B 31, L219 (1998) CrossRefADSGoogle Scholar
  8. 8.
    M. Marinescu, Phys. Rev. A 50, 3177 (1994) CrossRefADSGoogle Scholar
  9. 9.
    T. Orlikowski, G. Staszewska, L. Wolniewicz, Mol. Phys. 96, 1445 (1999) CrossRefADSGoogle Scholar
  10. 10.
    C.W. Clenshaw, A.R. Curtis, Num. Math. 2, 197 (1960) MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    M. Kennedy, F.J. Smith, Mol. Phys. 13, 443 (1967) CrossRefADSGoogle Scholar
  12. 12.
    P. Staanum, A. Pashov, H. Knöckel, E. Tiemann, Phys. Rev. A 75, 042513 (2007) CrossRefADSGoogle Scholar
  13. 13.
    G. Audi, A.H. Wapstra, Nucl. Phys. A565, 1 (1993) ADSGoogle Scholar
  14. 14.
    B.-G. Du, J.-F. Sun, J.-C. Zhang, Y. Zhang, W. Li, Z.-L. Zhu, Chinese Phys. Lett. 25, 3639 (2008) CrossRefADSGoogle Scholar
  15. 15.
    M.J. Jamieson, A. Dalgarno, J.N. Yukich, Phys. Rev. A 46, 6956 (1992) CrossRefADSGoogle Scholar
  16. 16.
    C.J. Williams, P.S. Julienne, Phys. Rev. A 47, 1524 (1993) CrossRefADSGoogle Scholar
  17. 17.
    M.J. Jamieson, B. Zygelman, Phys. Rev. A 64, 032703 (2001) CrossRefADSGoogle Scholar
  18. 18.
    M.J. Jamieson, A.S.-C. Cheung, H. Ouerdane, Eur. Phys. J. D 56, 181 (2010) CrossRefADSGoogle Scholar
  19. 19.
    L. Wolniewicz, J. Chem. Phys. 99, 1851 (1993) CrossRefADSGoogle Scholar
  20. 20.
    M.J. Jamieson, A. Dalgarno, L. Wolniewicz, Phys. Rev. A 61, 042705 (2000) CrossRefADSGoogle Scholar
  21. 21.
    Z.C. Yan, J.F. Babb, A. Dalgarno, G.W.F. Drake, Phys. Rev. A 54, 2824 (1996) CrossRefADSGoogle Scholar
  22. 22.
    C. Herring, M. Flicker, Phys. Rev. A 134, 362 (1964) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.School of Computing Science, University of GlasgowGlasgowUK
  2. 2.Mediterranean Institute of Fundamental PhysicsRomeItaly

Personalised recommendations