Skip to main content
Log in

H+ and He2+ impact charge transfer cross sections of magnesium

  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract.

H+ impact single and He2+ impact single and double electron capture cross sections of magnesium atoms have been calculated in the modified binary encounter approximation (BEA). The accurate expressions of ion impact \(\sigma _{\Delta {E}}\) (cross section for energy transfer \(\Delta E\)) and Hartree-Fock momentum distributions of the target electrons have been used throughout the calculations. On the basis of the present work it is concluded that inner shell captures by H+ and He2+ ions incident on magnesium atoms contribute partly to single electron capture and partly to transfer ionization cross sections. The calculated He2+ impact double electron capture cross sections of magnesium are in reasonably good agreement with the experimental observations. This indicates the success of the present theoretical approach in study of charge transfer cross sections of atoms as indirect mechanisms do not interfere with double electron capture processes in this case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Purkait, S. Sounda, A. Dhara, C.R. Mandal, Phys. Rev. A 74, 042723 (2006)

    Article  ADS  Google Scholar 

  2. A.V. Vinogradov, I.I. Sobelman, Sov. Phys. JEPT 36, 115 (1973)

    Google Scholar 

  3. J.E. Bayfield, G.A. Khayrallah, Phys. Rev. A 11, 920 (1975)

    Article  ADS  Google Scholar 

  4. B.N. Roy, D.K. Rai, J. Phys. B 12, 2015 (1979)

    Article  ADS  Google Scholar 

  5. R.W. McCullough, T.V. Goffe, M.B. Shah, M. Lennon, H.B. Gilbody, J. Phys. B 15, 1111 (1982)

    Google Scholar 

  6. D.E. Post, D.R. Mikhelsen, R.A. Hulse, L.D. Stewart, J.C. Weisheit, Princeton, Plasma Physics Laboratory Report PPPL-1592 p-1, 1979

  7. J.H. McGuire, L. Weaver, Phys. Rev. A 16, 41 (1977)

    Article  ADS  Google Scholar 

  8. D.S.F. Crothers, R. McCarroll, J. Phys. B 20, 2835 (1987)

    Article  ADS  Google Scholar 

  9. Dz. Belkic, I. Mancev, Phys. Scr. 45, 35 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  10. Dz. Belkic, I. Mancev, Phys. Scr. 46, 18 (1993)

    Article  ADS  Google Scholar 

  11. L.H. Thomas, Proc. R. Soc. A 114, 561 (1927)

    Article  ADS  Google Scholar 

  12. M. Gryzinski, Phys. Rev. 115, 374 (1959)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. M. Gryzinski, Phys. Rev. A 138, 305 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  14. M. Gryzinski, Phys. Rev. A 138, 322 (1965)

    MathSciNet  ADS  Google Scholar 

  15. M. Gryzinski, Phys. Rev. A 138, 336 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  16. D.R. Bates, R.A. Mapleton, Proc. Phys. Soc. 87, 657 (1966)

    Article  ADS  Google Scholar 

  17. D.R. Bates, R.A. Mapleton, Proc. Phys. Soc. 90, 909 (1967)

    Article  ADS  Google Scholar 

  18. A. Kumar, B.N. Roy, J. Phys. B 12, 2025 (1979)

    Article  ADS  Google Scholar 

  19. C.K. Tan, A.R. Lee, J. Phys. B 14, 2399 (1981)

    Article  ADS  Google Scholar 

  20. C.K. Tan, A.R. Lee, J. Phys. B 14, 2409 (1981)

    Article  ADS  Google Scholar 

  21. S.N. Chatterjee, B.N. Roy, J. Phys. B 18, 4283 (1985)

    Article  ADS  Google Scholar 

  22. M.B. Shah, P. McCallion, Y. Itoh, H.B. Gilbody, J. Phys. B At. Mol. Opt. Phys. 25, 3693 (1992)

    Article  ADS  Google Scholar 

  23. J.T. Jefferies, Astrophys. J. 377, 337 (1991)

    Article  ADS  Google Scholar 

  24. R.A. Mapleton, N. Grossbard, Phys. Rev. A 188, 228 (1969)

    Article  ADS  Google Scholar 

  25. G.W. Catlow, M.R.C. McDowell, Proc. Phys. Soc. 92, 875 (1967)

    Article  ADS  Google Scholar 

  26. L. Vriens, Proc. Phys. Soc. 90, 935 (1967)

    Article  ADS  Google Scholar 

  27. E. Clementi, C. Roetti, At. Data Nucl. Data Tables 14, 177 (1974)

    Article  ADS  Google Scholar 

  28. J.P. Desclaux, At. Data Nucl. Data Tables 12, 325 (1973)

    Article  Google Scholar 

  29. J.C. Slater, Phys. Rev. 98, 1039 (1955)

    Article  ADS  Google Scholar 

  30. G. Peach, J. Phys. B 3, 328 (1970)

    Article  ADS  Google Scholar 

  31. R.F. Boivin, S.K. Srivastava, J. Phys. B At. Mol. Opt. Phys. 31, 2381 (1998)

    Article  ADS  Google Scholar 

  32. L.K. Jha, B.N. Roy, Eur. Phys. J. D 20, 5 (2002)

    Article  ADS  Google Scholar 

  33. M.S. Pindzola, J.A. Ludlow, F. Robicheaux, J. Colgan, D.C. Griffin, J. Phys. B At. Mol. Opt. Phys. 42, 215204 (2009)

    Article  ADS  Google Scholar 

  34. M.P. Singh, S.N. Chatterjee, L.K. Jha, B.N. Roy, Phys. Scr. 80, 025302 (2009)

    Article  ADS  Google Scholar 

  35. D.W. Martin, R.A. Langley, D.S. Harmer, J.W. Hooper, E.W. McDaniel, Phys. Rev. A 136, 385 (1964)

    ADS  Google Scholar 

  36. L.I. Pivovar, Y.Z. Lerchenko, A.N. Gregorev, Sov. Phys. JETP 27, 699 (1968)

    ADS  Google Scholar 

  37. C.K. Tan, A.R. Lee, J. Phys. B 16, 1445 (1983)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. K. Jha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumari, S., Chatterjee, S., Jha, L. et al. H+ and He2+ impact charge transfer cross sections of magnesium. Eur. Phys. J. D 61, 355–363 (2011). https://doi.org/10.1140/epjd/e2010-10296-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2010-10296-6

Keywords

Navigation