Advertisement

The European Physical Journal D

, Volume 61, Issue 2, pp 349–353 | Cite as

Theoretical study of the dynamics for the H + LiH (v = 0, j = 0) \(\to\) H 2 + Li reaction and its isotopic variants

  • Y. F. Liu
  • X. H. He
  • D. H. Shi
  • J. F. Sun
Article

Abstract.

Quasi-classical trajectory (QCT) method is carried out to calculate the dynamics of the H + LiH (v = 0, j = 0) \(\to\) H2 + Li reaction and its isotopic variants based on the potential energy surface of the lowest \(^2A'\) electronic state reported by Prudente et al. [Chem. Phys. Lett. 474, 18 (2009)]. The reaction cross-section, product rotational alignment parameter \(\langle P_2\) (\(\vec{j'}\) \(\cdot\) \(\vec{k})\rangle\) and one generalized polarization-dependent differential cross-section (2π/σ)(\(d\sigma_{00}\)/d \(\omega_t\)) are calculated. We found that different collision energies and mass factors show driving influence on the process of the reactions and product molecules H2 (HD, D2) polarization distribution, and the trend of the isotopic effects in the high collision energy range is different to that in the low collision energy range. The calculations are also interpreted in relation to the features of the underlying potential energy surface. A comparison between the title reactions and a barrier-less reaction F + HBr \(\to\) FH + Br has been discussed in detail.

Keywords

Collision Energy Potential Energy Surface High Collision Energy Product Molecule Mass Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F.V. Prudente, J.M.C. Marques, A.M. Maniero, Chem. Phys. Lett. 474, 18 (2009) CrossRefADSGoogle Scholar
  2. 2.
    N.J. Clarke, M. Sironi, M. Raimondi, S. Kumar, F.A. Gianturco, E. Buonomo, D.L. Cooper, Chem. Phys. 233, 9 (1998) CrossRefGoogle Scholar
  3. 3.
    H.S. Lee, Y.S. Lee, G.-H. Jeung, J. Phys. Chem. A 103, 11080 (1999) CrossRefGoogle Scholar
  4. 4.
    L.J. Dunne, J.N. Murrell, P. Jemmer, Chem. Phys. Lett. 336, 1 (2001) CrossRefADSGoogle Scholar
  5. 5.
    R. Padmanaban, S. Mahapatra, J. Chem. Phys. 117, 6469 (2002) CrossRefADSGoogle Scholar
  6. 6.
    K.H. Kim, Y.S. Lee, T. Ishida, G.-H. Jeung, J. Chem. Phys. 119, 4689 (2003) CrossRefADSGoogle Scholar
  7. 7.
    R. Martinazzo, G.F. Tantardini, E. Bodo, F.A. Gianturco, J. Chem. Phys. 119, 11241 (2003) CrossRefADSGoogle Scholar
  8. 8.
    H. Berriche, C. Tlili, J. Mol. Struct. Theochem 678, 11 (2004) CrossRefGoogle Scholar
  9. 9.
    H. Berriche, J. Mol. Struct. Theochem 682, 89 (2004) CrossRefGoogle Scholar
  10. 10.
    P. Defazio, C. Petrongolo, P. Gamallo, M. González, J. Chem. Phys. 122, 214303 (2005) CrossRefADSGoogle Scholar
  11. 11.
    R. Padmanaban, S. Mahapatra, J. Theor. Comput. Chem. 5, 871 (2006) CrossRefGoogle Scholar
  12. 12.
    R. Padmanaban, S. Mahapatra, J. Phys. Chem. A 110, 6039 (2006) CrossRefGoogle Scholar
  13. 13.
    M. Wernli, D. Caruso, E. Bodo, F.A. Gianturco, J. Phys. Chem. A 113, 1121 (2009) CrossRefGoogle Scholar
  14. 14.
    S. Lepp, P.C. Stancil, A. Dalgarno, J. Phys. B At. Mol. Opt. Phys. 35, 57 (2002) CrossRefADSGoogle Scholar
  15. 15.
    E. Bodo, F.A. Gianturco, R. Martinazzo, Phys. Rep. 384, 85 (2003) CrossRefADSGoogle Scholar
  16. 16.
    N. Yoshida, T. Abel, L. Hernquist, N. Sugiyama, Astrophys. J. 592, 645 (2003) CrossRefADSGoogle Scholar
  17. 17.
    T. Prodanović, B.D. Fields, Astrophys. J. 597, 48 (2003) CrossRefADSGoogle Scholar
  18. 18.
    Z.-C. Yan, J.F. Babb, A. Dalgarno, G.W.F. Drake, Phys. Rev. A 54, 2824 (1996) CrossRefADSGoogle Scholar
  19. 19.
    S. Bililign, B.C. Hattaway, T.L. Robinson, G.-H, Jeung, J. Chem. Phys. 114, 7052 (2001) CrossRefADSGoogle Scholar
  20. 20.
    J.-J. Chen, Y.-M. Hung, D.-K. Liu, H.-S. Fung, K.-C. Lin, J. Chem. Phys. 114, 9395 (2001) CrossRefADSGoogle Scholar
  21. 21.
    R. Padmanaban, S. Mahapatra, J. Chem. Phys. 120, 1746 (2004) CrossRefADSGoogle Scholar
  22. 22.
    R. Padmanaban, S. Mahapatra, J. Chem. Phys. 121, 7681 (2004) CrossRefADSGoogle Scholar
  23. 23.
    X.H. Li, M.S. Wang, I. Pino, C.L. Yang, L.Z. Ma, Phys. Chem. Chem. Phys. 11, 10438 (2009) CrossRefGoogle Scholar
  24. 24.
    E. Bodo, F.A. Gianturco, R. Martinazzo, M. Raimondi, Chem. Phys. 271, 309 (2001) CrossRefGoogle Scholar
  25. 25.
    D.G. Truhlar, J.T. Muckerman, in Atom – Molecule Collision Theory: A Guide for the Experimentalists, edited by R.B. Bernstein (Plenum Press, New York, 1979), p. 505 Google Scholar
  26. 26.
    N.E. Shafer-Ray, A.J. Orr-Ewing, R.N. Zare, J. Phys. Chem. 99, 7591 (1995) CrossRefGoogle Scholar
  27. 27.
    F.J. Aoiz, M. Brouard, P.A. Enriquez, J. Chem. Phys. 105, 4964 (1996) CrossRefADSGoogle Scholar
  28. 28.
    K.L. Han, G.Z. He, N.Q. Lou, J. Chem. Phys. 105, 8699 (1996) CrossRefADSGoogle Scholar
  29. 29.
    F.J. Aoiz, L. Banares, V.J. Herrero, J. Chem. Soc. Faraday Trans. 94, 2483 (1998) CrossRefGoogle Scholar
  30. 30.
    M.L. Wang, K.L. Han, G.Z. He, J. Chem. Phys. 109 (1998) 5446 Google Scholar
  31. 31.
    M.L. Wang, K.L. Han, G.Z. He, J. Phys. Chem. A 102, 10204 (1998) CrossRefGoogle Scholar
  32. 32.
    M.D. Chen, M.L. Wang, K.L. Han, S.L. Ding, Chem. Phys. Lett. 301, 303 (1999) CrossRefADSGoogle Scholar
  33. 33.
    M.D. Chen, K.L. Han, N.Q. Lou, Chem. Phys. 283, 463 (2002) CrossRefADSGoogle Scholar
  34. 34.
    M.D. Chen, K.L. Han, N.Q. Lou, J. Chem. Phys. 118, 4463 (2003) CrossRefADSGoogle Scholar
  35. 35.
    X. Zhang, K.L. Han, Int. J. Quantum Chem. 106, 1815 (2006) CrossRefADSGoogle Scholar
  36. 36.
    Ch. Schlier, A. Seiter, J. Phys. Chem. A 102, 9399 (1998) CrossRefGoogle Scholar
  37. 37.
    N.C. Blais, D.G. Truhlar, J. Chem. Phys. 67, 1540 (1977) CrossRefADSGoogle Scholar
  38. 38.
    M.D. Chen, K.L. Han, N.Q. Lou, Chem. Phys. Lett. 357, 483 (2002) CrossRefADSGoogle Scholar
  39. 39.
    R.J. Li, K.L. Han, F.E. Li, R.C. Lu, G.Z. He, N.Q. Lou, Chem. Phys. Lett. 220, 281 (1994) CrossRefADSGoogle Scholar
  40. 40.
    P.J. Kuntz, E.M. Nemeth, J.C. Polanyi, J. Chem. Phys. 44, 3368 (1966) CrossRefGoogle Scholar
  41. 41.
    M.L. Wang, K.L. Han, G.Z. He, J. Phys. Chem. A 102, 10204 (1998) CrossRefGoogle Scholar
  42. 42.
    K.L. Han, G.Z. He, N.Q. Lou, J. Chem. Phys. 105, 8699 (1996) CrossRefADSGoogle Scholar
  43. 43.
    H. Kornweitz, A. Persky, J. Phys. Chem. A 108, 140 (2004) CrossRefGoogle Scholar
  44. 44.
    W.L. Quan, P.Y. Tang, B.Y. Tang, K.L. Han, Chemical Research Chinese Universities 23, 96 (2007) CrossRefGoogle Scholar
  45. 45.
    Z.X. Duan, Y. Qi, J. Dalian Jiaotong Univ. 30, 102 (2008) Google Scholar
  46. 46.
    Z.X. Duan, Y. Qi, Y.C. Lu, Mol. Phys. 106, 2725 (2008) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of PhysicsHenan Normal UniversityXinxiangP.R. China

Personalised recommendations