The European Physical Journal D

, Volume 61, Issue 2, pp 443–448 | Cite as

Counting limit cycles with the help of the renormalization group

  • D. Das
  • D. Banerjee
  • J. K. Bhattacharjee
  • A. K. Mallik


We use the renormalization group to set up an easy algorithm for finding the amplitude equation for an arbitrary two dimensional dynamical system of the Liénard type. This allows us to address the second part of Hilbert’s sixteenth problem, at least in the weak damping limit.


Renormalization Group Stable Limit Cycle Amplitude Equation Divergent Term Dimensional Dynamical System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N.N. Bogoliubov, Y.A. Mitropolsky, Asymptotic Methods in the Theory of Oscillations (Gordon and Breach, New York, 1961) Google Scholar
  2. 2.
    N. Minorsky, Nonlinear Oscillations (FL Krieger Publishing, Melbourne, 1974) Google Scholar
  3. 3.
    D.W. Jordan, P. Smith, Nonlinear Ordinary Differential Equations (Oxford University Press, Oxford, 1977) Google Scholar
  4. 4.
    R.H. Rand, Lecture Notes on Nonlinear Vibrations,
  5. 5.
    D. Banerjee, J.K. Bhattacharjee, J. Phys. A: Math. Theor. 43, 062001 (2010) CrossRefMathSciNetADSGoogle Scholar
  6. 6.
    A. Sarkar, J.K. Bhattacharjee, S. Chakraborty, D. Banerjee, submitted Google Scholar
  7. 7.
    L.Y. Chen, N. Goldenfeld, Y. Oono, Phys. Rev. E 54, 376 (1996) CrossRefADSGoogle Scholar
  8. 8.
    G.C. Paquette, Physica A 276, 122 (2000) CrossRefADSGoogle Scholar
  9. 9.
    S.I. Ei, Kazuyuki Fujii, Teiji Kunihiro, Ann. Phys. 280, 236 (2000) MATHCrossRefADSGoogle Scholar
  10. 10.
    R.E.L. DeVille, A. Harkin, M. Holzer, K. Josic, T.J. Kaper, Physica D 237, 1029 (2008) MATHCrossRefMathSciNetADSGoogle Scholar
  11. 11.
    M. Ziane, J. Math. Phys. 41, 3290 (1999) CrossRefMathSciNetADSGoogle Scholar
  12. 12.
    S.H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering (Westview Press, USA, 1994) Google Scholar
  13. 13.
    V.K. Chandrasekar, M. Senthilvelan, M. Lakshmanan, Phys. Rev. E 72, 066203 (2005) CrossRefADSGoogle Scholar
  14. 14.
    L. Forest, N. Glade, J. Demongeot, C.R. Biologie 330, 97 (2007) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • D. Das
    • 1
  • D. Banerjee
    • 2
  • J. K. Bhattacharjee
    • 3
  • A. K. Mallik
    • 3
  1. 1.Department of MathematicsSouth Point High SchoolKolkataIndia
  2. 2.Department of PhysicsJadavpur UniversityKolkataIndia
  3. 3.S.N. Bose National Centre for Basic SciencesKolkataIndia

Personalised recommendations