Skip to main content
Log in

Implementing multi-qubit entanglement of two-level systems inside a superconducting phase qubit

  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract.

The interaction between a superconducting phase qubit and the two-level systems located inside the Josephson tunnel barrier is described by the XY model, which is naturally used to implement the i-SWAP gate. With this gate, we propose a scheme to efficiently generate multi-qubit entangled states of such two-level systems, including multipartite W state and cluster states. In particular, it is found that, with the help of the phase qubit, the entanglement witness can be used to efficiently detect the produced multi-qubit entangled states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Mod. Phys. 81, 865 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. H.J. Briegel, D.E. Browne, W. Dür, R. Raussendorf, M. Van den Nest, Nature Phys. 5, 19 (2009)

    Article  Google Scholar 

  3. P.W. Shor, Phys. Rev. A 52, R2493 (1995)

    Article  ADS  Google Scholar 

  4. A.M. Steane, Phys. Rev. Lett. 77, 793 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. W. Dür, G. Vidal, J.I. Cirac, Phys. Rev. A 62, 062314 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  6. C.F. Roos, M. Riebe, H. Häffner, W. Hänsel, J. Benhelm, G. P.T. Lancaster, C. Becher, F. Schmidt-Kaler, R. Blatt, Science 304, 1478 (2004)

    Article  ADS  Google Scholar 

  7. D.M. Greenberger, M. Horne, A. Zeilinger, in Bell’s Theorem, Quantum theory, and conceptions of the universe, edited by M. Kafatos (Kluwer Academic, Dordrecht, 1989)

  8. J.Q. You, X.B. Wang, T. Tanamoto, F. Nori, Phys. Rev. A 75, 052319 (2007)

    Article  ADS  Google Scholar 

  9. H. Häffner, W. Hänsel, C.F. Roos, J. Benhelm, D. Chek-al-kar, M. Chwalla, T. Kärber, U.D. Rapol, M. Riebe, P.O. Schmidt, C. Becher, O. Gühne, W. Dür, R. Blatt, Nature 438, 643 (2005)

    Article  ADS  Google Scholar 

  10. D. Leibfried, E. Knill, S. Seidelin, J. Britton, R.B. Blakestad, J. Chiaverini, D.B. Hume, W.M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, D.J. Wineland, Nature 438, 639 (2005)

    Article  ADS  Google Scholar 

  11. C.Y. Lu, X.Q. Zhou, O. Gühne, W.B. Gao, J. Zhang, Z.S. Yuan, A. Goebel, T. Yang, J.W. Pan, Nature Phys. 3, 91 (2007)

    Article  ADS  Google Scholar 

  12. M. Steffen, M. Ansmann, R.C. Bialczak, N. Katz, E. Lucero, R. McDermott, M. Neeley, E.M. Weig, A.N. Cleland, J.M. Martinis, Science 313, 1423 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  13. A.J. Berkley, H. Xu, R.C. Ramos, M.A. Gubrud, F.W. Strauch, P.R. Johnson, J.R. Anderson, A.J. Dragt, C.J. Lobb, F.C. Wellstood, Science 300, 1548 (2003)

    Article  ADS  Google Scholar 

  14. M.A. Sillanpää, J.I. Park, R.W. Simmonds, Nature 449, 438 (2007)

    Article  ADS  Google Scholar 

  15. J.H. Plantenberg, P.C. de Groot, C. Harmans, J.E. Mooij, Nature 447, 836 (2007)

    Article  ADS  Google Scholar 

  16. M. Grajcar, A. Izmalkov, S.H.W. van der Ploeg, S. Linzen, T. Plecenik, T. Wagner, U. Hübner, E. Il’ichev, H.G. Meyer, A.Y. Smirnov, P.J. Love, A. Maassen van den Brink, M.H.S. Amin, S. Uchaikin, A.M. Zagoskin, Phys. Rev. Lett. 96, 047006 (2006)

    Article  ADS  Google Scholar 

  17. Y. Makhlin, G. Schön, A. Shnirman, Rev. Mod. Phys. 73, 357 (2001)

    Article  ADS  Google Scholar 

  18. J.Q. You, F. Nori, Phys. Today 58, 42 (2005)

    Article  Google Scholar 

  19. L.F. Wei, Y.X. Liu, F. Nori, Phys. Rev. B 71, 134506 (2005)

    Article  ADS  Google Scholar 

  20. L.F. Wei, J.R. Johansson, L.X. Cen, S. Ashhab, F. Nori, Phys. Rev. Lett. 100, 113601 (2008)

    Article  ADS  Google Scholar 

  21. R.W. Simmonds, K.M. Lang, D.A. Hite, S. Nam, D.P. Pappas, J.M. Martinis, Phys. Rev. Lett. 93, 077003 (2004)

    Article  ADS  Google Scholar 

  22. K.B. Cooper, M. Steffen, R. McDermott, R.W. Simmonds, S. Oh, D.A. Hite, D.P. Pappas, J.M. Martinis, Phys. Rev. Lett. 93, 180401 (2004)

    Article  ADS  Google Scholar 

  23. J.M. Martinis, K.B. Cooper, R. McDermott, M. Steffen, M. Ansmann, K.D. Osborn, K. Cicak, S. Oh, D.P. Pappas, R.W. Simmonds, C.C. Yu, Phys. Rev. Lett. 95, 210503 (2005)

    Article  ADS  Google Scholar 

  24. L. Tian, R.W. Simmonds, Phys. Rev. Lett. 99, 137002 (2007)

    Article  ADS  Google Scholar 

  25. M. Constantin, C.C. Yu, Phys. Rev. Lett. 99, 207001 (2007)

    Article  ADS  Google Scholar 

  26. S. Ashhab, J.R. Johansson, F. Nori, Physica C 444, 45 (2006)

    Article  ADS  Google Scholar 

  27. S. Ashhab, J.R. Johansson, F. Nori, New J. Phys. 8, 103 (2006)

    Article  ADS  Google Scholar 

  28. A.M. Zagoskin, S. Ashhab, J.R. Johansson, F. Nori, Phys. Rev. Lett. 97, 077001 (2006)

    Article  ADS  Google Scholar 

  29. Y. Yu, S.L. Zhu, G. Sun, X. Wen, N. Dong, J. Chen, P. Wu, S. Han, Phys. Rev. Lett. 101, 157001 (2008)

    Article  ADS  Google Scholar 

  30. R.C. Bialczak, R. McDermott, M. Ansmann, M. Hofheinz, N. Katz, E. Lucero, M. Neeley, A.D. O’Connell, H. Wang, A.N. Cleland, J.M. Martinis, Phys. Rev. Lett. 99, 187006 (2007)

    Article  ADS  Google Scholar 

  31. A. Shnirman, G. Schön, I. Martin, Y. Makhlin, Phys. Rev. Lett. 94, 127002 (2005)

    Article  ADS  Google Scholar 

  32. I. Martin, L. Bulaevskii, A. Shnirman, Phys. Rev. Lett. 95, 127002 (2005)

    Article  ADS  Google Scholar 

  33. M. Steffen, M. Ansmann, R. McDermott, N. Katz, R.C. Bialczak, E. Lucero, M. Neeley, E.M. Weig, A.N. Cleland, J.M. Martinis, Phys. Rev. Lett. 97, 050502 (2006)

    Article  ADS  Google Scholar 

  34. M. Neeley, M. Ansmann, R.C. Bialczak, M. Hofheinz, N. Katz, E. Lucero, A. O’Connell, H. Wang, A.N. Cleland, J.M. Martinis, Nature Phys. 4, 523 (2008)

    Article  Google Scholar 

  35. L. Tian, K. Jacobs, Phys. Rev. B 79, 144503 (2009)

    Article  ADS  Google Scholar 

  36. J.M. Martinis, S. Nam, J. Aumentado, K.M. Lang, C. Urbina, Phys. Rev. B 67, 094510 (2003)

    Article  ADS  Google Scholar 

  37. M.B. Plenio, P.L. Knight, Rev. Mod. Phys. 70, 101 (1998)

    Article  ADS  Google Scholar 

  38. T. Tanamoto, K. Maruyama, Y.X. Liu, X. Hu, F. Nori, Phys. Rev. A 78, 062313 (2008)

    Article  ADS  Google Scholar 

  39. T. Tanamoto, Y.X. Liu, S. Fujita, X. Hu, F. Nori, Phys. Rev. Lett. 97, 230501 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  40. T. Tanamoto, Y.X. Liu, X. Hu, F. Nori, Phys. Rev. Lett. 102, 100501 (2009)

    Article  ADS  Google Scholar 

  41. G. Tóth, O. Gühne, Phys. Rev. Lett. 94, 060501 (2005)

    Article  ADS  Google Scholar 

  42. O. Gühne, P. Hyllus, Int. J. Theor. Phys. 42, 1001 (2003)

    Article  MATH  Google Scholar 

  43. L. Chen, Y.X. Chen, Phys. Rev. A 76, 022330 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  44. Y.X. Liu, L.F. Wei, F. Nori, Phys. Rev. B 72, 014547 (2005)

    Article  ADS  Google Scholar 

  45. Y.J. Han, R. Raussendorf, L.M. Duan, Phys. Rev. Lett. 98, 150404 (2007)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. B. Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, L., Xue, ZY., Wang, Z. et al. Implementing multi-qubit entanglement of two-level systems inside a superconducting phase qubit . Eur. Phys. J. D 61, 499–505 (2011). https://doi.org/10.1140/epjd/e2010-00258-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2010-00258-5

Keywords

Navigation