Advertisement

The European Physical Journal D

, Volume 60, Issue 2, pp 269–277 | Cite as

Matter wave interferometry for measuring a molecular transition dipole moment

Molecular Physics and Chemical Physics

Abstract

Molecular matter wave interferometry was investigated for its capability of measuring molecular transition dipole moments. A pair of laser beams, tuned to a b3 \(\rm\Pi_{0^+_{\it u}}\)X 1 \(\rm\Sigma^+_{\it g}\) transition, acts as beam splitters to coherently split the matter wave, forming a matter wave interferometer of the Ramsey type. An additional laser field is introduced between the two beam splitters. This field couples near resonantly the ground state level of the beam splitter transition with an excited level of the B1 \({\rm\Pi}_u\) state. The observed shift of the matter wave interference by the AC-Stark effect is used to determine as an example the transition dipole moment of the Q(25) line of the (4-0) band of the B-X transition of K2. The experimental result agrees well within its uncertainty limits with transition dipole moments derived from earlier lifetime measurements and from ab initio calculations of transition dipole moment functions. Thus we could demonstrate quantitatively the applicability of matter wave interferometry for determination of transition dipole moments of molecules.

Keywords

Frequency Shift Beam Splitter Interference Pattern Transition Dipole Moment Matter Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Demtröder, Laser Spectroscopy (Springer Berlin Heidelberg, 2008), Vols. 1, 2 Google Scholar
  2. 2.
    G. Baumgartner, W. Demtröder, M. Stock, Z. Phys. 232, 462 (1970) CrossRefADSGoogle Scholar
  3. 3.
    C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Atom-Photon Interactions, Basic Processes and application (John Wiley & Sons, Inc, 1992) Google Scholar
  4. 4.
    U. Sterr, K. Sengstock, J.H. Müller, D. Bettermann, W. Ertmer, Appl. Phys. B 54, 341 (1992) CrossRefADSGoogle Scholar
  5. 5.
    F. Riehle, A. Witte, T. Kisters, J. Helmcke, Appl. Phys. B 54, 333 (1992) CrossRefADSGoogle Scholar
  6. 6.
    A. Morinaga, T. Tako, N. Ito, Phys. Rev. A 48, 1364 (1993) CrossRefADSGoogle Scholar
  7. 7.
    B. Deissler, K.J. Hughes, J.H.T. Burke, C.A. Sackett, Phys. Rev. A 77, 031604(R) (2008) CrossRefADSGoogle Scholar
  8. 8.
    O. Dulieu, Laboratoire Aimé Cotton, private communication (2009) Google Scholar
  9. 9.
    P.R. Berman, Atom Interferometry (Academic Press, 1997) Google Scholar
  10. 10.
    S. Liu, I. Sherstov, C. Lisdat, H. Knöckel, E. Tiemann, Eur. Phys. J. D 58, 369 (2010) CrossRefADSGoogle Scholar
  11. 11.
    A.R. Edmonds, Angular momentum in quantum mechanics (Princeton University Press, 1960) Google Scholar
  12. 12.
    R.A. Logan, R.E. Coté, P. Kusch, Phys. Rev. 86, 280 (1952) CrossRefADSGoogle Scholar
  13. 13.
    J. Heinze, U. Schühle, F. Engelke, C.D. Caldwell, J. Chem. Phys. 87, 45(1987) Google Scholar
  14. 14.
    S. Falke, H. Knöckel, J. Friebe, M. Riedmann, E. Tiemann, C. Lisdat, Phys. Rev. A 78, 012503 (2008) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Institut für Quantenoptik, Leibniz Universität HannoverHannoverGermany

Personalised recommendations