The European Physical Journal D

, Volume 59, Issue 3, pp 367–374 | Cite as

Some novel plane trajectories for carbon atoms and fullerenes captured by two fixed parallel carbon nanotubes

Molecular Physics and Chemical Physics

Abstract.

The movement of atoms and molecules at the nanoscale constitutes a fundamental problem in physics, especially following the motion of atoms in many-body systems condensing together to form molecular structures. A number of simplified nanoscale dynamical problems have been analyzed and here we investigate the classical orbiting problem around two centers of attraction at the nanoscale. An example of such a system would be a carbon atom or a fullerene orbiting in a plane which is perpendicular to two fixed parallel carbon nanotubes. We model the van der Waals forces between the molecules by the Lennard-Jones potential. In particular, the total pairwise potential energies between carbon atoms on the fullerene and the carbon nanotubes are approximated by the continuous approach, so that the total molecular energy can be determined analytically. Since we assume that such interactions occur at a sufficiently large distance, the classical two center problem analysis is legitimate to determine various novel trajectories of the atom and fullerene numerically. It is clear that the oscillatory period of the atom for some bounded trajectories reaches terahertz frequencies. We comment that the continuous approach adopted here has the merit of a very fast computational time and can be extended to more complicated structures, in contrast to quantum mechanical calculations and molecular dynamics simulations.

Keywords

Fullerene Plane Trajectory Total Potential Energy Continuous Approach Elliptical Trajectory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.E.H. Jones, New Scientist 32, 245 (1966) Google Scholar
  2. 2.
    H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, Nature 318, 162 (1985) CrossRefADSGoogle Scholar
  3. 3.
    S. Iijima, Nature 354, 56 (1991) CrossRefADSGoogle Scholar
  4. 4.
    P.G. Collins, A. Zettl, H. Bando, A. Thess, R.E. Smalley, Science 278, 100 (1997) CrossRefGoogle Scholar
  5. 5.
    D.V. Massimiliano, E. Stephane, R.H. James Jr., Introduction to Nanoscale Science and Technology (Kluwer Academic Publishers, Boston, MA, 2004) Google Scholar
  6. 6.
    R.S. Ruoff, D.C. Lorents, Carbon 33, 925 (1995) CrossRefGoogle Scholar
  7. 7.
    J.P. Salvetat, J.M. Bonard, N.H. Thomson, A.J. Kulik, L. Forro, W. Benoit, L. Zuppiroli, Appl. Phys. A 69, 225 (1999) CrossRefADSGoogle Scholar
  8. 8.
    T.W. Odom, J.L. Huang, P. Kim, C.M. Lieber, Nature 391, 62 (1998) CrossRefADSGoogle Scholar
  9. 9.
    Q. Zheng, Q. Jiang, Phys. Rev. Lett. 88, 045503 (2002) CrossRefADSGoogle Scholar
  10. 10.
    J. Cumings, A. Zettl, Science 289, 602 (2000) CrossRefADSGoogle Scholar
  11. 11.
    H. Somada, K. Hirahara, S. Akita, Y. Nakayama, Nano Lett. 9, 62 (2009) CrossRefADSGoogle Scholar
  12. 12.
    S.B. Legoas, V.R. Coluci, S.F. Braga, P.Z. Coura, S.O. Dantas, D.S. Galvao, Phys. Rev. Lett. 90, 055504 (2003) CrossRefADSGoogle Scholar
  13. 13.
    J.L. Rivera, C. McCabe, P.T. Cumming, Nano Lett. 3, 1001 (2003) CrossRefADSGoogle Scholar
  14. 14.
    J.L. Rivera, C. McCabe, P.T. Cumming, Nanotechnology 16, 186 (2005) CrossRefADSGoogle Scholar
  15. 15.
    D. Baowan, J.M. Hill, Z. Angew. Math. Phys. 58, 857 (2007) MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    B.J. Cox, N. Thamwattana, J.M. Hill, Proc. R. Soc. Lond., A 463, 461 (2007) MATHGoogle Scholar
  17. 17.
    B.J. Cox, N. Thamwattana, J.M. Hill, Proc. R. Soc. Lond. A 463, 477 (2007) MATHCrossRefADSGoogle Scholar
  18. 18.
    B.J. Cox, N. Thamwattana, J.M. Hill, Proc. R. Soc. Lond. A 646, 691 (2008) ADSGoogle Scholar
  19. 19.
    B.J. Cox, N. Thamwattana, J.M. Hill, J. Phys. A Math. Theor. 40, 13197 (2007) MATHCrossRefMathSciNetADSGoogle Scholar
  20. 20.
    T.A. Hilder, J.M. Hill, Micro Nano Lett. 2, 50 (2007) CrossRefGoogle Scholar
  21. 21.
    T.A. Hilder, J.M. Hill, J. Appl. Phys. 101, 064319 (2007) CrossRefADSGoogle Scholar
  22. 22.
    Y. Chan, G.M. Cox, J.M. Hill, International Conference on Nanoscience and Nanotechnology, ICONN 2008, Melbourne, 25-29 February 2008, p.152 Google Scholar
  23. 23.
    Y. Chan, N. Thamwattana, G.M. Cox, J.M. Hill, J. Math. Chem. 46, 1271 (2009) MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Y. Chan, N. Thamwattana, J.M. Hill, Few-Body Syst. 46, 239 (2009) CrossRefMathSciNetADSGoogle Scholar
  25. 25.
    L.G. Taff, Celestial Mechanics: A computational guide for the practitioner (Wiley-Interscience Publication, New York, 1985) Google Scholar
  26. 26.
    D.O. Mathúna, Integrable Systems in Celestial Mechanics (Birkhauser, Boston, 2008) Google Scholar
  27. 27.
    J.E. Lennard, Proc. Roy. Soc. 106A, 441 (1924) Google Scholar
  28. 28.
    G.C. Maitland, M. Rigby, E.B. Smith, W.A. Wakeham, Intermolecular forces, 1st edn. (Clarendon Press, Oxford, 1981) Google Scholar
  29. 29.
    R.L. Burden, J.D. Faires, Numerical Analysis, 8th edn. (Thomson, South Bank, 2005) Google Scholar
  30. 30.
    N.M. Ghoniem, E.P. Busso, N. Kioussis, H. Huang, Philos. Mag. 83, 3475 (2003) CrossRefADSGoogle Scholar
  31. 31.
    H. Goldstein, C. Poole, J. Safko, Classical Mechanics, 3rd edn. (Addison Wesley, San Francisco, 2002) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Nanomechanics Group, School of Mathematics and Applied StatisticsUniversity of WollongongWollongongAustralia

Personalised recommendations