Advertisement

The European Physical Journal D

, Volume 60, Issue 1, pp 121–135 | Cite as

High energy radiation femtochemistry of water molecules: early electron-radical pairs processes

  • Y. A. Gauduel
  • Y. Glinec
  • J.-P. Rousseau
  • F. Burgy
  • V. Malka
Topical issue on Molecular level assessments of radiation biodamage

Abstract

The damages triggered by ionizing radiation on chemical and biological targets depend on the survival probability of radicals produced in clusters of ionization-excitation events. In this paper, we report on femtolysis (FEMTOsecond radioLYSIS) of pure liquid water using an innovative laser produced high-energy, ultra-short electron bunches in the 2.5-15 MeV range and high energy radiation femtochemistry (HERF) measurements. The short-time monitoring of a primary reducing radical, hydrated electron e\(^{-}_{aq}\), has been performed in confined ionization spaces (nascent spurs). The calculated yield of hydrated electrons at early time, \(G({\rm e}^{-}_{aq})_{ET}\), is estimated to be 6.5 ± 0.5 (number/100 eV) at t ~ 5 ps after the ultrafast energy deposition. This estimated value is high compare to (i) the available data of previous works that used scavenging techniques; (ii) the predictions of stochastic water radiolysis modelling for which the initial behaviour of hydrated electron is investigated in the framework of a classical diffusion regime of independent pairs. The HERF developments give new insights into the early ubiquitous radical escape probability in nascent aqueous spurs and emphasize the importance of short-lived solvent bridged electron-radical complexes [\({\rm H}_{3}{\rm O}^{+...}\)\({\rm e}_{aq}^{-}\) ..\({\rm OH}]_{n{\rm H}_2{\rm O}}\) (non-independent pairs). A complete understanding of the G(\({\rm e}^{-}_{aq})_{ET}\) value needs to account for quantum aspects of 1s-like trapped electron ground state and neoformed prototropic radicals that govern ultra-fast recombination processes within these non-independent pair configurations. Femtolysis data emphasize that within a time-dependent non-diffusion regime, spatio-temporal correlations between hydrated electron and nearest neighbours OH radical or hydrated proton (\({\rm H}_{3}{\rm O}^{+}\)) would assist ultrafast anisotropic 1D recombination within solvent bridged electron-radical complexes. The emerging HERF domain would provide guidance for understanding of ultrashort-lived sub-structure of tracks and stimulate future semi-quantum simulations on prethermal radical reactions.

Keywords

Probe Beam Aqueous Sample Electron Bunch Relativistic Electron Beam Tron Beam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Water Science Reviews, edited by F. Franck (Cambridge University Press, Cambridge, 1985-1989), Vol. 1-4 Google Scholar
  2. 2.
    Water and aqueous solutions, edited by G.W. Neilson, J.E. Enderby (Adam Hilger, Boston, 1986) Google Scholar
  3. 3.
    G.V. Buxton, Proc. Roy. Soc. Lond. A 328, 1 (1972) ADSCrossRefGoogle Scholar
  4. 4.
    N.V. Klassen, In Radiation Chemistry, edited by Farhataziz, M.A. Rodgers (VCH, Weinheim, 1987) Google Scholar
  5. 5.
    H.G. Paretzke, Radiation track structure theory, in Kinetics of nonhomogeneous processes, edited by G.R. Freeman (Wiley, New York, 1987), pp. 89-170 Google Scholar
  6. 6.
    R.D. Wood, Ann. Rev. Biochem. 65, 135 (1996) CrossRefGoogle Scholar
  7. 7.
    Photochemistry and Radiation Chemistry, edited by J.F. Wishart, D.G. Nocera, Adv. Chem. Series (ACS, Washington, 1998) Google Scholar
  8. 8.
    F. Zemlin, R. Schuster, E. Beckmann, J.L. Carrascosa, J.M. Valpuesta, G. Ertl, Nature 399, 51 (1999) ADSCrossRefGoogle Scholar
  9. 9.
    Radiation Chemistry: Present Status and Future Trends, edited by C.D. Jonah, B.S.M. Madhava Rao (Elsevier, Amsterdam, 2001) Google Scholar
  10. 10.
    N. Saleh, K. Flippo, K. Nemoto, D. Umstadter, R.A. Crowell, C.D. Jonah, A.D. Trifunac, Rev. Sci. Instrum. 71, 2305 (2000) ADSCrossRefGoogle Scholar
  11. 11.
    Y.E. Dubrova, M. Plumb, B. Gutierrez, E. Boulton, A.J. Jeffreys, Nature 405, 37 (2002) ADSCrossRefGoogle Scholar
  12. 12.
    W. Friedland, P. Jacob, H.G. Paretzeke, M. Merzagora, A. Ottolenghi, Radiat. Environ. Biophys. 38, 39 (1999) CrossRefGoogle Scholar
  13. 13.
    W. Friedland, H.G. Paretzke, F. Ballarini, A. Ottolenghi, G. Kreth, C. Cremer, Radiat. Environ. Biophys. 47, 49 (2008) CrossRefGoogle Scholar
  14. 14.
    Free-radical-Induced DNA Damage and its Repair, edited by C. Von Sonntag (Springer, Heidelberg, 2006) Google Scholar
  15. 15.
    Radiation induced molecular phenomena in nucleic acids, edited by M Shukla, J. Leszczynski (Springer, 2008) Google Scholar
  16. 16.
    A. Joubert, K.M. Zimmerman, Z. Bencokova, J. Gastaldo, N. Cahvaudra, V. Favaudon, C.F. Arlett, N. Foray, Int. J. Radiat. Biol. 84, 107 (2008) CrossRefGoogle Scholar
  17. 17.
    E. Surdutovich, O.I. Obolensky, E. Scifoni, I. Pshenichnow, I. Mishustin, A.V. Solov’yov, W. Greiner, Eur. Phys. J. D 51, 63 (2009) ADSCrossRefGoogle Scholar
  18. 18.
    E.J. Hart, M. Anbar, The Hydrated Electron (Wiley, New York, 1970) Google Scholar
  19. 19.
    K.Y. Lam, J.W. Hunt, Int. J. Radiat. Phys. Chem. 7, 317 (1975) CrossRefGoogle Scholar
  20. 20.
    J.E. Aldrich, K.Y. Lam, P.C. Shragge, J.W. Hunt, Radiat. Res. 63, 42 (1975) CrossRefGoogle Scholar
  21. 21.
    G. Czapski, E. Peled, J. Phys. Chem. 77, 893 (1973) CrossRefGoogle Scholar
  22. 22.
    D. Razem, W.H. Hamill, J. Phys. Chem. 81, 1625 (1977) CrossRefGoogle Scholar
  23. 23.
    C.D. Jonah, J.R. Miller, E.R. Hart, M.S. Matheson, J. Phys. Chem. 79, 2705 (1975) CrossRefGoogle Scholar
  24. 24.
    C.D. Jonah, J.R. Miller, M.S. Matheson, J. Phys. Chem. 81, 1618 (1977) CrossRefGoogle Scholar
  25. 25.
    M.A. Lewis, C.D. Jonah, J. Phys. Chem. 90, 5367 (1986) CrossRefGoogle Scholar
  26. 26.
    The Study of Fast Processes and Transient Species by Electron Pulse Radiolysis, edited by J.H. Baxendale, F. Busi (Reidel Publishing Company, Dordrecht, Holland, 1982) Google Scholar
  27. 27.
    S.M. Pimblott, J.A. LaVerne, A. Mozumder, N.J.B. Green, J. Phys. Chem. 94, 488 (1990) CrossRefGoogle Scholar
  28. 28.
    S.M. Pimblott, J. Phys. Chem. 95, 6946 (1991) CrossRefGoogle Scholar
  29. 29.
    S.M. Pimblott, A. Mozumder, J. Phys. Chem. 95, 1291 (1991) Google Scholar
  30. 30.
    S.M. Pimblott, J.A. LaVerne, J. Phys. Chem. A 101, 5828 (1997) CrossRefGoogle Scholar
  31. 31.
    D.T. Goodhead, The initial physical damage produced by ionising radiation, Int. J. Radiat. Biol. 56, 623 (1989) CrossRefGoogle Scholar
  32. 32.
    J.W. Boag, E.J. Hart, Nature 197, 47 (1963) ADSCrossRefGoogle Scholar
  33. 33.
    B.D. Michel, E.J. Hart, K.H. Schmidt, J. Phys. Chem. 75, 2798 (1971) CrossRefGoogle Scholar
  34. 34.
    W.J. Hamill, Phys. Chem. 73, 1341 (1969) CrossRefGoogle Scholar
  35. 35.
    S. Khorana, W.H. Hamill, J. Phys. Chem. 75, 3081 (1971) CrossRefGoogle Scholar
  36. 36.
    R.K. Wolff, M.J. Bronskill, J.W. Hunt, J. Chem. Phys. 53, 4211 (1970) ADSCrossRefGoogle Scholar
  37. 37.
    J.E. Aldrich, M.J. Bonskill, R.K. Wolff, J.W. Hunt, J. Chem. Phys. 55, 530 (1971) ADSCrossRefGoogle Scholar
  38. 38.
    R.K. Wolff, J.E. Aldrich, T. Penner, J.W. Hunt, J. Phys. Chem. 79, 210 (1975) CrossRefGoogle Scholar
  39. 39.
    C. Gopinathan, G. Girija, Radiat. Phys. Chem. 21, 209 (1983) ADSGoogle Scholar
  40. 40.
    C.D. Jonah, E.J. Hart, M.S. Matheson J. Phys. Chem. 77, 1838 (1973) Google Scholar
  41. 41.
    C.D. Jonah, M.S. Matheson, J.R. Miller, E.J. Hart, J. Phys. Chem. 80, 1267 (1976) CrossRefGoogle Scholar
  42. 42.
    C.D. Jonah, D.M. Bartels, A.C. Chernovitz, Radiat. Phys. Chem. 34, 145 (1989) Google Scholar
  43. 43.
    D.M. Bartels, M.T. Craw, P. Han, P, A.D. Trifunac, J. Phys. Chem. 93, 2412 (1989) CrossRefGoogle Scholar
  44. 44.
    P. Han, D.M. Bartels, J. Phys. Chem. 94, 5824 (1990) CrossRefGoogle Scholar
  45. 45.
    I.G. Kaplan, A.M. Miterev, V.Y Sukhonosov, Radiat. Phys. Chem. 36, 493 (1990) Google Scholar
  46. 46.
    T. Goulet, J.P. Jay-Gerin, J. Chem. Phys. 96, 5076 (1992) ADSCrossRefGoogle Scholar
  47. 47.
    Y. Frongillo, T. Goulet, M.J. Fraser, V. Cobut, J.P. Patau, J.P. Jay-Gerin, Radiat. Phys. Chem. 51, 245 (1998) ADSCrossRefGoogle Scholar
  48. 48.
    Y. Muroya, J. Meesungnoen, J.P. Jay-Gerin, A. Filali-Mouhin, T. Goulet, Y. Katsumura, S. Mankhetkorn, Can. J. Chem. 80, 1367 (2002) CrossRefGoogle Scholar
  49. 49.
    S.M. Pimblott, J. Phys. Chem. 96, 4485 (1992) CrossRefGoogle Scholar
  50. 50.
    S.M. Pimblott, J.A. LaVerne, D. Bartels, C.D. Jonah, J. Phys. Chem. 100, 9412 (1996) CrossRefGoogle Scholar
  51. 51.
    S.M. Pimblott, J.A. LaVerne, J. Phys. Chem. A 102, 2967 (1998) CrossRefGoogle Scholar
  52. 52.
    Kinetics of Nonhomogeneous Processes, edited by G.R. Freeman (John Wiley & Sons, New York, 1987) Google Scholar
  53. 53.
    D.M. Bartels, A.R. Cook, M. Mudaliar, C.D. Jonah, J. Phys. Chem. A 104, 1686 (2000) and references therein CrossRefGoogle Scholar
  54. 54.
    Y. Gauduel, S. Pommeret, A. Antonetti, Chem. Phys. 189, 1 (1990) CrossRefGoogle Scholar
  55. 55.
    Y. Gauduel, S. Pommeret, A. Migus, A. Antonetti, J. Phys. Chem. 93, 3880 (1989) CrossRefGoogle Scholar
  56. 56.
    Y. Gauduel, S. Pommeret, A. Antonetti, J. Phys. Chem. 97, 134 (1993) CrossRefGoogle Scholar
  57. 57.
    S. Pommeret, A. Antonetti, Y. Gauduel, J. Am. Chem. Soc. 113, 9105 (1991) CrossRefGoogle Scholar
  58. 58.
    Y. Gauduel, in Ultra-fast Reaction Dynamics and Solvent Effects, edited by Y. Gauduel, P.J. Rossky (AIP Press, New York, 1994) Google Scholar
  59. 59.
    J. Belloni, H. Monard, F. Gobert, J.P. Larbre, A. Demarque, A. et al., Nucl. Instrum. Meth. Phys. Res. A 539, 527 (2005) ADSCrossRefGoogle Scholar
  60. 60.
    F.Y. You, G.R. Freeman, J. Phys. Chem. 83, 2383 (1979) CrossRefGoogle Scholar
  61. 61.
    Y. Gauduel, J.L. Martin, A. Migus, A. Antonetti, Ultra-fast Phenomena V, edited by G.R. Fleming, Siegman (Springer Verlag, New York, 1986), Vol. 308 Google Scholar
  62. 62.
    A. Migus, Y. Gauduel, J.L. Martin, A. Antonetti, Phys. Rev. Lett. 58, 1559 (1987) ADSCrossRefGoogle Scholar
  63. 63.
    Y. Gauduel, S. Pommeret, A. Migus, A. Antonetti, Rad. Phys. Chem. 34, 5 (1989) Google Scholar
  64. 64.
    J.C. Alfano, P.W. Walhout, Y. Kimura, P.F. Barbara, J. Chem. Phys. 98, 5996 (1993) ADSCrossRefGoogle Scholar
  65. 65.
    Y. Kimura et al., J. Phys. Chem. 98, 3450l (1994) CrossRefGoogle Scholar
  66. 66.
    C. Silva, P.K. Walhout, K. Yokoyama, P.F. Barbara, Phys. Rev. Lett. 80, 1086 (1998) ADSCrossRefGoogle Scholar
  67. 67.
    K. Yokoyama, C. Silva, D.H. Son, P.K. Walhout, P.F. Barbara, J. Phys. Chem. 102, 6957 (1998) Google Scholar
  68. 68.
    A. Reuther, A. Laubereau, D.N. Nikogosyan, J. Phys. Chem. 100, 16794 (1996) CrossRefGoogle Scholar
  69. 69.
    A. Assel, R. Laenen, A. Laubereau, J. Chem. Phys. 111, 6869 (1999) ADSCrossRefGoogle Scholar
  70. 70.
    R. Laenen, T. Roth, J. Mol. Struct. 37, 598 (2001) Google Scholar
  71. 71.
    M.F. Emde, A. Baltuska, A. Kummrow, M.S. Pshenichnikov, D.A. Wiersma, Phys. Rev. Lett. 80, 4645 (1998) ADSCrossRefGoogle Scholar
  72. 72.
    P.J. Rossky, J. Opt. Soc. Am. B 7, 1727 (1990) ADSCrossRefGoogle Scholar
  73. 73.
    F. Webster, P.J. Rossky, R.A. Friesner, Comput. Phys. Commun. 63, 494 (1991) MATHADSCrossRefGoogle Scholar
  74. 74.
    F. Webster, J. Schnitker, M. Friedrichs, R.A. Friesner, P.J. Rossky, Phys. Rev. Lett. 66, 3172 (1991) ADSCrossRefGoogle Scholar
  75. 75.
    F. Webster, E.T. Wang, P.J. Rossky, R.A. Friesner, J. Chem. Phys. 100, 4835 (1994) ADSCrossRefGoogle Scholar
  76. 76.
    O.V. Prezhdo, P.J. Rossky, J. Chem. Phys. 107, 5863 (1997) ADSCrossRefGoogle Scholar
  77. 77.
    C.Y. Yang, K.F. Wong, M.S. Skaf, P.J. Rossky, J. Chem. Phys. 114, 3598 (2001) ADSCrossRefGoogle Scholar
  78. 78.
    R.B. Barnett, U. Landman, A. Nitzan, J. Chem. Phys. 90, 4413 (1989) ADSCrossRefGoogle Scholar
  79. 79.
    R.B. Barnett, U. Landman, A. Nitzan, J. Chem. Phys. 93, 8187 (1990) ADSCrossRefGoogle Scholar
  80. 80.
    E. Neria, A. Nitzan, R.N. Barnett, U. Landman, Phys. Rev. Lett. 67, 1011 (1991) ADSCrossRefGoogle Scholar
  81. 81.
    G. Makov, A. Nitzan, J. Phys. Chem. 98, 3459 (1994) CrossRefGoogle Scholar
  82. 82.
    D. Borgis, A. Staib, Chem. Phys. Lett. 230, 405 (1994) ADSCrossRefGoogle Scholar
  83. 83.
    A. Staib, D. Borgis, J. Chem. Phys. 103, 2642 (1995) ADSCrossRefGoogle Scholar
  84. 84.
    M. Sprik, M.L. Klein, J. Chem. Phys. 89, 7556 (1988) ADSCrossRefGoogle Scholar
  85. 85.
    K. Laasonen, M. Sprik, M. Parrinello, R. Car, J. Chem. Phys. 99, 9080 (1993) ADSCrossRefGoogle Scholar
  86. 86.
    M. Tuckerman, K. Laasonen, M. Sprik, M. Parrinello, J. Phys. Chem. 99, 5749 (1995) CrossRefGoogle Scholar
  87. 87.
    M. Tuckerman, K. Laasonen, M. Sprik, M. Parrinello, J. Chem. Phys. 103, 150 (1995) ADSCrossRefGoogle Scholar
  88. 88.
    S. Pommeret, Y. Gauduel, J. Phys. Chem. 93, 4126 (1991) CrossRefGoogle Scholar
  89. 89.
    C.D. Jonah, C. Romero, Chem. Phys. Lett. 123, 209 (1986) ADSCrossRefGoogle Scholar
  90. 90.
    C. Romero, C.D. Jonah, J. Chem. Phys. 129, 253 (1989) CrossRefGoogle Scholar
  91. 91.
    W.M. Bartczak, M. Hilczer, J. Kroh, J. Phys. Chem. 91, 3834 (1987) CrossRefGoogle Scholar
  92. 92.
    W.M. Bartczak, K. Pernal, Comp. Chem. 24, 469 (2000) CrossRefGoogle Scholar
  93. 93.
    H.W. Richter, Photochemistry and Radiation Chemistry, Adv. Chem. Series, edited by J.F. Wishart, D.G. Nocera (ACS, Washington, 1998), p. 5 Google Scholar
  94. 94.
    Y. Muroya, M. Lin, G. Wu, H. Iijima, K. Yoshii, T. Ueda, H. Kudo, Y. Katsumura, Radiat. Phys. Chem. 72, 169 (2005) and references therein ADSCrossRefGoogle Scholar
  95. 95.
    V. Malka, J. Faure, J.R. Marques, F. Amiranoff, J.P. Rousseau, S. Ranc, J.P. Chambaret, Z. Najmudin, B. Warton, P. Mora, A. Solodov, Phys. Plasmas 8, 2605 (2001) ADSCrossRefGoogle Scholar
  96. 96.
    V. Malka, S. Fritzler, E. Lefebvre, M.M. Aleonard, F. Burgy, J.P. Chambaret, J.F. Chemlin, K. Krushelnick, G. Malka, S.P.D. Mangles, Z. Najmudin, M. Pittman, J.P. Rousseau, J.N. Scheurer, B. Walton, A.E. Dangor, Science 298, 1596 (2002) ADSCrossRefGoogle Scholar
  97. 97.
    S. Fritzler, K. Ta Phuoc, V. Malka, A. Rousse, E. Lefebvre, Appl. Phys. Lett., 83, 3888 (2003) Google Scholar
  98. 98.
    S. Fritzler, Particle sources with high-intensity lasers: a tool for plasma diagnostics and an innovative source for applications, Ph.D. thesis, Palaiseau, 2003 Google Scholar
  99. 99.
    J. Faure, Y. Glinec, A. Pukhov, S. Kiselev Gordienko, E. Lefebvre, J.P. Rousseau, F. Burgy, V. Malka, Nature 431, 541 (2004) ADSCrossRefGoogle Scholar
  100. 100.
    R.A. Crowell, I.A. Shkrob, D.A. Oulianov, O. Korovyanko, D.J. Gosztola, Y. Li, R. Rey de Castro, Nucl. Instrum. Meth. Phys. Res. 241, 9 (2005) ADSCrossRefGoogle Scholar
  101. 101.
    J. Faure, C. Rechatin, A. Norlin, A. Lifschitz, Y. Glinec, V. Malka, Nature 444, 737 (2006) ADSCrossRefGoogle Scholar
  102. 102.
    E. Esarey, C.B. Schroeder, W.P. Leemans, Rev. Mod. Phys. 81, 1229 (2009) ADSCrossRefGoogle Scholar
  103. 103.
    D.A. Oulianov, R.A. Crowell, D.J. Gosztola, I.A. Shkrob, O.J. Korovyanko, R.C. Rey-de-Castro, J. Appl. Phys. 101, 053102-1-9 (2007) Google Scholar
  104. 104.
    V. Malka, J. Faure, Y. Gauduel, E. Lefebvre, A. Rousse, K. Ta Phuoc, Nature Phys. 4, 447 (2008) ADSCrossRefGoogle Scholar
  105. 105.
    W. Bartczak, A. Hummel, J. Chem. Phys. 87, 5222 (1987) ADSCrossRefGoogle Scholar
  106. 106.
    Y. Hirata, N. Mataga, Y. Sakata, S. Misumi, J. Phys. Chem. 90, 6065 (1986) CrossRefGoogle Scholar
  107. 107.
    T.W. Scott, C. Braun, Can. J. Chem. 63, 228 (1985) CrossRefGoogle Scholar
  108. 108.
    Y. Gauduel, S. Pommeret, N. Yamada, A. Migus, A. Antonetti, J. Am. Chem. Soc. 111, 4974 (1989) CrossRefGoogle Scholar
  109. 109.
    C.V. Shank, R. Yen, R.L. Fork, J. Orenstein, G.L. Baker, Phys. Rev. Lett. 49, 1660 (1982) ADSCrossRefGoogle Scholar
  110. 110.
    A. Plonka, Radiat. Phys. Chem. 39, 17 (1992) Google Scholar
  111. 111.
    A. Plonka, Annu. Rep. Chem. Section C 94, 89 (1998) CrossRefGoogle Scholar
  112. 112.
    Y. Gauduel, in Ultrafast Dynamics of Chemical Systems, edited by J.D. Simon (Kluwer Academic Publishers, Amsterdam, 1994) Google Scholar
  113. 113.
    B. Halle, G. Karlstrom, J. Chem. Soc. Faraday Trans. 2 79, 1031 (1983) CrossRefGoogle Scholar
  114. 114.
    J.E. Turner, J.L. Magee, A. Wright, A. Chatterjee, R.N. Hamm, R.H. Ritchie, Rad. Res. 96, 437 (1983) CrossRefGoogle Scholar
  115. 115.
    H. Gelabert, Y. Gauduel, J. Phys. Chem. 100, 13993 (1996) CrossRefGoogle Scholar
  116. 116.
    A. Belch, M. Berkowitz, J.A. Mc Cammon, J. Am. Chem. Soc. 115, 9692 (1993) CrossRefGoogle Scholar
  117. 117.
    D. Lu, S.J. Singer, J. Chem. Phys. 105, 3700 (1996) ADSCrossRefGoogle Scholar
  118. 118.
    Y. Gauduel, S. Pommeret, A. Migus, A. Antonetti, J. Phys. Chem. 93, 3880 (1989) CrossRefGoogle Scholar
  119. 119.
    Y. Gauduel, S. Pommeret, A. Migus, A. Antonetti, J. Phys. Chem. 95, 533 (1991) CrossRefGoogle Scholar
  120. 120.
    B. Brozek-Pluska, D. Gliger, A. Hallou, V. Malka, Y.A. Gauduel, Rad. Phys. Chem. 72, 149 (2005) ADSCrossRefGoogle Scholar
  121. 121.
    Y.A. Gauduel, Femtochemistry: Lasers to investigate ultrafast reactions, in Lasers in Chemistry, edited by M. Lackner (VCH, 2008), Vol. 2 Google Scholar
  122. 122.
    V. Cobut, Y. Frongillo, J.P. Patau, T. Goulet, M.J. Fraser, J.P. Jay-Gerin, Radiat. Phys. Chem. 51, 229 (1998) ADSCrossRefGoogle Scholar
  123. 123.
    B. Gervais, M. Beuve, G.H. Olivera, M.E. Galassi, Tadiat. Phys. Chem. 75, 493 (2006) ADSGoogle Scholar
  124. 124.
    M.S. Kreipl, W. Friedland, H.G. Paretzke, Radiat Environ. Biophys. 48, 11 (2009) CrossRefGoogle Scholar
  125. 125.
    M.S. Kreipl, W. Friedland, H.G. Paretzke, Radiat Environ. Biophys. 48, 349 (2009) and references therein CrossRefGoogle Scholar
  126. 126.
    N.J.B. Green, M.J. Pilling, S.M. Pimblott, P. Clifford, J. Phys. Chem. 94, 251 (1990) CrossRefGoogle Scholar
  127. 127.
    R. Vuilleumier, D. Borgis, J. Phys. Chem. B 102, 4261 (1998) CrossRefGoogle Scholar
  128. 128.
    L. Turi, M.P. Gaigeot, N. Levy, D. Borgis, J. Chem. Phys. 114, 7805 (2001) ADSCrossRefGoogle Scholar
  129. 129.
    T. Sumiyoshi, M. Katayama, Chem. Lett. 1887 (1982) Google Scholar
  130. 130.
    T. Sumiyoshi, K. Tsugawa, T. Yamada, M. Katayama, Bull. Chem. Soc. Jpn 58, 3073 (1985) CrossRefGoogle Scholar
  131. 131.
    Y. Gauduel, H. Gelabert, F. Guilloud, J. Am. Chem. Soc. 122, 5082 (2000) CrossRefGoogle Scholar
  132. 132.
    Y. Gauduel, A. Hallou, B. Charles, J. Phys. Chem. A 107, 2011 (2003) CrossRefGoogle Scholar
  133. 133.
    J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J.-P. Rousseau, F. Burgy, V. Malka, Nature 431, 541 (2004) ADSCrossRefGoogle Scholar
  134. 134.
    J. Faure, C. Rechatin, A. Norlin, A. Lifschitz, Y. Glinec, V. Malka, Nature 444, 737 (2006) ADSCrossRefGoogle Scholar
  135. 135.
    Y. Gauduel, Y. Glinec, V. Malka, J. Phys. 101, 012004.1 (2008) Google Scholar
  136. 136.
    C.R. Wang, J. Nguyen, Q.B. Lu, J. Am. Chem. Soc. 131, 11320 (2009) CrossRefGoogle Scholar
  137. 137.
    L. Sanche, Nature 461, 358 (2009) ADSCrossRefGoogle Scholar
  138. 138.
    Advances in quantum chemistry: theory of the interaction of radiation with biomolecules, edited by J.R. Sabin, E. Brandas (Elsevier, Amsterdam, 2007) Google Scholar
  139. 139.
    I. Plante, F.A. Cucinotta, N.J. Phys. 10, 125020 (2008) CrossRefGoogle Scholar
  140. 140.
    M.-P. Gaigeot, P. Lopez-Tarifa, F. Martin, M. Alcami, R. Vuilleumier, I. Tavernelli, M.-A. Hervé du Penhoat, M.-F. Politis, Mutat. Res.: Rev. Mutat. Res., 704, 45 (2010) Google Scholar
  141. 141.
    V. Malka, J. Faure, Y. Gauduel, Mutat. Res.: Rev. Mutat. Res., 704, 142 (2010) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Y. A. Gauduel
    • 1
  • Y. Glinec
    • 1
  • J.-P. Rousseau
    • 1
  • F. Burgy
    • 1
  • V. Malka
    • 1
  1. 1.Laboratoire d’Optique Appliquée, CNRS UMR 7639, École Polytechnique ParisTech – ENSTA ParisTechPalaiseau CedexFrance

Personalised recommendations