Advertisement

The European Physical Journal D

, Volume 60, Issue 1, pp 163–169 | Cite as

IR laser desorption of oligonucleotides

A novel gas phase target for radiation damage studies
  • T. L. Merrigan
  • C. A. Hunniford
  • D. J. Timson
  • M. Catney
  • R. W. McCullough
Topical issue on Molecular level assessments of radiation biodamage

Abstract

The desorption of oligonucleotides by 3 \({\mu}\)m laser irradiation has been studied by laser induced fluorescence imaging of the resulting gas phase plumes. Fitting of the plume data has been achieved by using a modified Maxwell Boltzmann distribution which incorporates a range of stream velocities. Spatial density profiles, velocities and temperature variation have been determined from these fits indicating that the oligonucleotide plume only achieves a partial thermal relaxation. This laser desorption technique may provide a means of overcoming the limited mass range of gas phase biomolecules available from thermal evaporation techniques.

Keywords

Laser Desorption Optical Parametric Oscillator Stream Velocity Analyte Molecule Thermal Evaporation Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    U. Amaldi, G. Kraft, Rep. Prog. Phys. 68, 1861 (2005) ADSCrossRefGoogle Scholar
  2. 2.
    A.F. Lago, L.H. Coutinho, R.R.T. Marinho, A.N. de Brito, G.G.B. de Souza, Chem. Phys. 307, 9 (2004) ADSCrossRefGoogle Scholar
  3. 3.
    L. Sanche, Eur. Phys. J. D 35, 367 (2005) ADSCrossRefGoogle Scholar
  4. 4.
    T. Schlatholter, F. Alvarado, S. Bari, R. Hoekstra, Phys. Scr. 73, C113 (2006) CrossRefGoogle Scholar
  5. 5.
    H. Abdoul-Carime, S. Gohlke, E. Illenberger, Phys. Rev. Lett. 92, 168103 (2004) ADSCrossRefGoogle Scholar
  6. 6.
    S. Ptasinska, S. Denifl, S. Gohlke, P. Scheier, E. Illenberger, T.D. Märk, ACIE 45, 1893 (2006) CrossRefGoogle Scholar
  7. 7.
    I. Bald, I. Dabkowska, E. Illenberger, ACIE 47, 8518 (2008) CrossRefGoogle Scholar
  8. 8.
    K. Dreisewerd, Chem. Rev. 103, 395 (2003) CrossRefGoogle Scholar
  9. 9.
    R. Knochenmuss, Analyst 131, 966 (2006) ADSCrossRefGoogle Scholar
  10. 10.
    C.D. Mowry, M.V. Johnston, Rapid Commun. Mass Spectrom. 7, 569 (1993) CrossRefGoogle Scholar
  11. 11.
    D.A. Allwood, P.E. Dyer, R.W. Dreyfus, I.K. Perera, Appl. Surf. Sci. 110, 616 (1997) CrossRefGoogle Scholar
  12. 12.
    T.L. Merrigan, C.A. Hunniford, D.J. Timson, M. Catney, R.W. McCullough, Biochem. Soc. Trans. 37, 905 (2009) CrossRefGoogle Scholar
  13. 13.
    A.A. Puretzky, D.B. Geohegan, Chem. Phys. Lett. 286, 425 (1998) ADSCrossRefGoogle Scholar
  14. 14.
    A.A. Puretzky, D.B. Geohegan, G.B. Hurst, M.V. Buchanan, B.S. Luk’yanchuk, Phys. Rev. Lett. 83, 444 (1999) ADSCrossRefGoogle Scholar
  15. 15.
    D. Momcilovic, B. Wittgren, K.G. Wahlund, J. Karlsson, G. Brinkmalm, Rapid Commun. Mass Spectrom. 17, 1107 (2003) CrossRefGoogle Scholar
  16. 16.
    M.Z. Wang, M.C. Fitzgerald, Anal. Chem. 73, 625 (2001) CrossRefGoogle Scholar
  17. 17.
    S. Sauer, J. Biochem. Biophys. Methods 70, 311 (2007) CrossRefGoogle Scholar
  18. 18.
    S.L. Cohen, B.T. Chait, Anal. Chem. 68, 31 (1996) CrossRefGoogle Scholar
  19. 19.
    A.M. Distler, J. Allison, Anal. Chem. 73, 5000 (2001) CrossRefGoogle Scholar
  20. 20.
    S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, J. Phys. B At. Mol. Opt. Phys. 32, R131 (1999) ADSCrossRefGoogle Scholar
  21. 21.
    R.E. Johnson, Large ions: Their vaporization, detection and structural analysis (John Wiley and Sons, Inc., New York, NY (United States), 1997) Google Scholar
  22. 22.
    I. Noorbatcha, R.R. Lucchese, Y. Zeiri, J. Chem. Phys. 86, 5816 (1987) ADSCrossRefGoogle Scholar
  23. 23.
    R. Kelly, R.W. Dreyfus, NIM B 32, 341 (1988) ADSCrossRefGoogle Scholar
  24. 24.
    J.C.S. Kools, T.S. Baller, S.T. Dezwart, J. Dieleman, J. Appl. Phys. 71, 4547 (1992) ADSCrossRefGoogle Scholar
  25. 25.
    C.D. Mowry, M.V. Johnston, J. Phys. Chem. 98, 1904 (1994) CrossRefGoogle Scholar
  26. 26.
    V. Gabelica, E. Schulz, M. Karas, J. Mass Spectrom. 39, 579 (2004) CrossRefGoogle Scholar
  27. 27.
    R. Knochenmuss, L.V. Zhigilei, J. Phys. Chem. B 109, 22947 (2005) CrossRefGoogle Scholar
  28. 28.
    L.V. Zhigilei, B.J. Garrison, Appl. Phys. Lett. 71, 551 (1997) ADSCrossRefGoogle Scholar
  29. 29.
    L.V. Zhigilei, B.J. Garrison, Rapid Commun. Mass Spectrom. 12, 1273 (1998) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • T. L. Merrigan
    • 1
  • C. A. Hunniford
    • 1
  • D. J. Timson
    • 2
  • M. Catney
    • 3
  • R. W. McCullough
    • 1
  1. 1.Centre for Plasma Physics, School of Mathematics and PhysicsQueen’s University Belfast, University RoadN. IrelandUK
  2. 2.Medical Biology Centre, School of Biological SciencesQueen’s University BelfastN. IrelandUK
  3. 3.Andor Technology plc., 7 Millennium Way, Springvale Business Park, Belfast, BT12 7ALN. IrelandUK

Personalised recommendations