The European Physical Journal D

, Volume 58, Issue 3, pp 369–377 | Cite as

Ramsey-Bordé interferometer and embedded Ramsey interferometer with molecular matter waves of 39K2

  • S. Liu
  • I. Sherstov
  • C. Lisdat
  • H. Knöckel
  • E. Tiemann
Quantum Optics


A matter wave interferometer based on a molecular beam of K2 has been designed for observation of both exits: with molecules in the electronically excited state and in the ground state. In addition to the excited state fluorescence the molecular ground state population is detected with a further laser. Two transitions to different electronic states were employed for this purpose and their usefulness is compared. Under the present experimental conditions both interferometer exits show a superposition of different interference patterns due to the influence of transverse and longitudinal overlaps of the interfering matter waves. The interference patterns have been analyzed to be composed of a contribution caused by a two beam splitter Ramsey interference and Ramsey-Bordé pattern with four beam splitters. This overlap of interference signals influences the suitability of the matter wave interferometer for phase measurements of the interferences.


Wave Packet Beam Splitter Interference Pattern Matter Wave Dark Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.D. Cronin, J. Schmiedmayer, D.E. Pritchard, Rev. Mod. Phys. 81, 1051 (2009)CrossRefADSGoogle Scholar
  2. 2.
    e.g. A. Miffre, M. Jaquey, M. Büchner, G. Trénec, J. Vigué, Phys. Scr. 74, C15 (2006)CrossRefGoogle Scholar
  3. 3.
    e.g. A. Shelkovnikov, C. Grain, R.J. Butcher, A. Amy-Klein, A. Goncharov, C. Chardonnet, IEEE J. Quantum Electron. 40, 1023 (2004)CrossRefADSGoogle Scholar
  4. 4.
    Ch. J. Bordé, N. Courtier, F. du Burk, A.N. Goncharov, M. Gorlicki, Phys. Lett. A 188, 187 (1994)CrossRefADSGoogle Scholar
  5. 5.
    M.S. Chapman, C.R. Ekstrom, T.D. Hammond, R.A. Rubenstein, J. Schmiedmeyer, S. Wehinger, D.E. Pritchard, Phys. Rev. Lett. 74, 4783 (1995)CrossRefADSGoogle Scholar
  6. 6.
    R.E. Grisenti, W. Schöllkopf, J.P. Toennies, J.R. Manson, T.A. Savas, H.I. Smith, Phys. Rev. A 61, 033608 (2000)CrossRefADSGoogle Scholar
  7. 7.
    S. Gerlich, L. Hackermüller, K. Hornberger, A. Stibor, H. Ulbricht, M. Gring, F. Goldfarb, T. Savas, M. Müri, M. Mayor, M. Arndt, Nature Phys. 3, 711 (2007)CrossRefADSGoogle Scholar
  8. 8.
    Ch. Lisdat, M. Frank, H. Knöckel, M.-L. Almazor, E. Tiemann, Eur. Phys. J. D 12, 235 (2000)CrossRefADSGoogle Scholar
  9. 9.
    Atom interferometry, edited by P.R. Berman (Academic Press, 1997)Google Scholar
  10. 10.
    C. Lisdat, thesis, Universität Hannover, 2001, online available through local library at
  11. 11.
    I.V. Sherstov, thesis, Leibniz Universität Hannover, 2006, online available through local library at
  12. 12.
    Ch. Lisdat, M. Frank, H. Knöckel, E. Tiemann, Appl. Phys. B 73, 99 (2001)ADSGoogle Scholar
  13. 13.
    I. Sherstov, S. Liu, C. Lisdat, H. Schnatz, S. Jung, H. Knöckel, E. Tiemann, Eur. Phys. J. D 41, 485 (2007)CrossRefADSGoogle Scholar
  14. 14.
    Ch. Lisdat, O. Dulieu, H. Knöckel, E. Tiemann, Eur. Phys. J. D 17, 319 (2001)CrossRefADSGoogle Scholar
  15. 15.
    C. Lisdat, H. Knöckel, E. Tiemann, J. Mol. Spectrosc. 199, 81 (2000)CrossRefADSGoogle Scholar
  16. 16.
    R.A. Logan, R.E. Coté, P. Kusch, Phys. Rev. 86, 280 (1952)CrossRefADSGoogle Scholar
  17. 17.
    J. Heinze, F. Engelke, J. Chem. Phys. 89, 1 (1988)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • S. Liu
    • 1
  • I. Sherstov
    • 1
  • C. Lisdat
    • 1
  • H. Knöckel
    • 1
  • E. Tiemann
    • 1
  1. 1.Institut für Quantenoptik, Leibniz Universität HannoverHannoverGermany

Personalised recommendations