The European Physical Journal D

, Volume 58, Issue 1, pp 147–151 | Cite as

Entanglement dynamics of multiqubit system in Markovian and non-Markovian reservoirs

Quantum Information


We study the entanglement dynamics of three qubits in contact with independent Markovian or non-Markovian reservoirs. The qubits are prepared in two types of GHZ-like or W-like states distinguished by initial excited-state populations. Though belonging to the same GHZ or W class of entanglement, the states with different initial excitations exhibit strikingly different dynamics. In addition, we show that the non-Markovian reservoirs can recover the multiqubit entanglement at instantaneous points or after a finite interval of entanglement disappearance. We also investigate the protection of multiqubit entanglement by the control of excitation emission via the detuning.


Entanglement Dynamic Entanglement Sudden Death Initial Excitation Multipartite Entanglement Tripartite Entanglement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cmabridge, 2000)MATHGoogle Scholar
  2. 2.
    W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998)CrossRefADSGoogle Scholar
  3. 3.
    G. Vidal, R.F. Werner, Phys. Rev. A 65, 032314 (2002)CrossRefADSGoogle Scholar
  4. 4.
    A.R.R. Carvalho, F. Minter, A. Buchleitner, Phys. Rev. Lett. 93, 230501 (2004)CrossRefADSGoogle Scholar
  5. 5.
    F. Minter, M. Kuś, A. Buchleitner, Phys. Rev. Lett. 95, 260502 (2005)CrossRefMathSciNetADSGoogle Scholar
  6. 6.
    L. Aolita, R. Chaves, D. Cavalcanti, A. Acín, L. Davidovich, Phys. Rev. Lett. 100, 080501 (2008)CrossRefADSGoogle Scholar
  7. 7.
    T. Yu, J.H. Eberly, Phys. Rev. Lett. 93, 140404 (2004)CrossRefADSGoogle Scholar
  8. 8.
    T. Yu, J.H. Eberly, Phys. Rev. Lett. 97, 140403 (2006)CrossRefADSGoogle Scholar
  9. 9.
    J.H. Eberly, T. Yu, Science 316, 555 (2007)CrossRefGoogle Scholar
  10. 10.
    T. Yu, J.H. Eberly, Science 323, 598 (2009)CrossRefMathSciNetADSGoogle Scholar
  11. 11.
    M.P. Almeida et al., Science 316, 579 (2007)CrossRefADSGoogle Scholar
  12. 12.
    J. Laurat et al., Phys. Rev. Lett. 99, 180504 (2007)CrossRefADSGoogle Scholar
  13. 13.
    C.E. López, G. Romero, F. Lastra, E. Solano, J.C. Retamal, Phys. Rev. Lett. 101, 080503 (2008)CrossRefGoogle Scholar
  14. 14.
    B. Bellomo, R. Lo Franco, G. Compagno, Phys. Rev. Lett. 99, 160502 (2007)CrossRefADSGoogle Scholar
  15. 15.
    B. Bellomo, R. Lo Franco, G. Compagno, Phys. Rev. A 77, 032342 (2008)CrossRefADSGoogle Scholar
  16. 16.
    L. Mazzola, S. Maniscalco, J. Piilo, K.A. Suominen, B.M. Garraway, Phys. Rev. A 79, 042302 (2009)CrossRefADSGoogle Scholar
  17. 17.
    S. Maniscalco, F. Francica, R.L. Zaffino, N. Lo Gullo, F. Plastina, Phys. Rev. Lett. 100, 090503 (2008)CrossRefMathSciNetADSGoogle Scholar
  18. 18.
    D.M. Greenberger, M.A. Horne, A. Zeilinger, Bell’s Theorem, Quantum Theory, and Conceptions of the Universe (Kluwer, Dordrecht, 1989)Google Scholar
  19. 19.
    W. Dür, G. Vidal, J.I. Cirac, Phys. Rev. A 62, 062314 (2000)CrossRefMathSciNetADSGoogle Scholar
  20. 20.
    W. Dür, J.I. Cirac, Phys. Rev. A 61, 042314 (2000)CrossRefMathSciNetADSGoogle Scholar
  21. 21.
    A. Peres, Phys. Rev. Lett. 77, 1413 (1996)MATHCrossRefMathSciNetADSGoogle Scholar
  22. 22.
    M. Horodecki, P. Horodecki, R. Horodecki, Phys. Rev. Lett. 80, 5239 (1998)MATHCrossRefMathSciNetADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of Physics, Qufu Normal UniversityShandong Provincial Key Laboratory of Laser Polarization and Information TechnologyQufuP.R. China
  2. 2.Department of Chemistry and Chemical EngineeringJining UniversityQufuP.R. China

Personalised recommendations