The European Physical Journal D

, Volume 58, Issue 1, pp 95–104 | Cite as

III. Electron-impact dissociative ionization of C2H 2 + and C2D 2 +

  • H. Cherkani-Hassani
  • D. S. Belic
  • J. J. Jureta
  • J. Lecointre
  • P. Defrance
Atomic and Molecular Collisions

Abstract

Absolute cross-sections for electron-impact dissociative ionization of C2 H 2 + and C2 D 2 + to CH+, C+, C 2 + , H+, CH 2 + and C2D+ fragments are determined for electron energies ranging from the corresponding threshold to 2.5 keV. Results obtained in a crossed beams experiment are analyzed to estimate the contribution of dissociative ionization to each fragment formation. The dissociative ionization cross sections are seen to decrease for more than an order of magnitude, from CH+ (5.37±0.10) × 10-17 cm2 over C+ (4.19± 0.16) × 10-17 cm2, C2D+ (3.94±0.38) × 10-17 cm2, C 2 + (3.82±0.15) × 10-17 cm2 and H+ (3.37±0.21) × 10-17 cm2 to CH 2 + (2.66±0.14) × 10-18 cm2. Kinetic energy release distributions of fragment ions are also determined from the analysis of the product velocity distribution. Cross section values, threshold energies and kinetic energies are compared with the data available from the literature. Conforming to the scheme used in the study of the dissociative excitation of C2H 2 + \(\left( {\rm C}_2 {\rm D}_2^+ \right)\), the cross-sections are presented in a format suitable for their implementation in plasma simulation codes.

Keywords

Threshold Energy Ionization Cross Dissociative Ionization Double Ionization Dissociation Limit 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Tawara, in Atomic and Molecular Processes in Fusion Plasmas, edited by R.K. Janev (Plenum, New-York, 1995), p. 461Google Scholar
  2. 2.
    G.H. Dunn, Nucl. Fusion Suppl. 2, 25 (1992)ADSGoogle Scholar
  3. 3.
    R.K. Janev, T. Kato, J.G. Wang, Phys. Plasmas 7, 4364 (2000)CrossRefADSGoogle Scholar
  4. 4.
    J. Lecointre, D.S. Belic, J.J. Jureta, R. Janev, P. Defrance, Eur. Phys. J. D 50, 265 (2008)CrossRefADSGoogle Scholar
  5. 5.
    J. Lecointre, D.S. Belic, J.J. Jureta, R.K. Janev, P. Defrance, Eur. Phys. J. D 55, 557 (2009)CrossRefADSGoogle Scholar
  6. 6.
    J. Lecointre, D.S. Belic, J.J. Jureta, R.K. Janev, P. Defrance, Eur. Phys. J. D 55, 569 (2009)CrossRefADSGoogle Scholar
  7. 7.
    H. Cherkani-Hassani, S. Cherkani-Hassani, D.S. Belic, J.J. Jureta, J. Lecointre, P. Defrance, Eur. Phys. J. D (2010) DOI: 10.1140/epjd/e2010-00070-3Google Scholar
  8. 8.
    H. Cherkani-Hassani, D.S. Belic, J.J. Jureta, J. Lecointre, P. Defrance, Eur. Phys. J. D (2010) DOI: 10.1140/epjd/e2010-00071-2Google Scholar
  9. 9.
    D.B. Popovic, N. Djuric, K. Holmberg, A. Neau, G.H. Dunn, Phys. Rev. A 64, 052709 (2001)CrossRefADSGoogle Scholar
  10. 10.
    R.K. Janev, D. Reiter, Collision Processes of Hydrocarbon Species in Hydrogen Plasmas: II. The Ethane and Propane Families, FZJ (Forschungszentrum Julich), Report Juel-4005 (2002)Google Scholar
  11. 11.
    J.R. Appling, B.E. Jones, L.E. Abbey, D.E. Bostwick, T.F. Moran, Org. Mass Spectrom. 18, 282 (1983)CrossRefGoogle Scholar
  12. 12.
    S.R. Andrews, F.M. Harris, D.E. Parry, Chem. Phys. 166, 69 (1992)CrossRefGoogle Scholar
  13. 13.
    E.M. Bahati, J.J. Jureta, D.S. Belic, S. Rachafi, P. Defrance, J. Phys. B: At. Mol. Opt. Phys. 34, 1757 (2001)CrossRefADSGoogle Scholar
  14. 14.
    J. Lecointre, D.S. Belic, H. Cherkani-Hassani, J.J. Jureta, P. Defrance, J. Phys. B: At. Mol. Opt. Phys. 39, 3275 (2006)CrossRefADSGoogle Scholar
  15. 15.
    H. Cherkani-Hassani, D.S. Belic, J.J. Jureta, P. Defrance, J. Phys. B: At. Mol. Opt. Phys. 39, 5105 (2006)CrossRefADSGoogle Scholar
  16. 16.
    J. Lecointre, S. Cherkani-Hassani, D.S. Belic, J.J. Jureta, K. Becker, H. Deutsch, T.D. Mark, M. Probst, R.K. Janev, P. Defrance, J. Phys. B: At. Mol. Opt. Phys. 40, 2201 (2007)CrossRefADSGoogle Scholar
  17. 17.
    P. Defrance, F. Brouillard, W. Claeys, G. Van Wassenhove, J. Phys. B: At. Mol. Opt. Phys. 14, 103 (1981)CrossRefADSGoogle Scholar
  18. 18.
    S.T. Pratt, P.M. Dehmer, J.L. Dehmer, J. Chem. Phys. 99, 6233 (1993)CrossRefADSGoogle Scholar
  19. 19.
    R. Thissen, J. Delwiche, J.M. Robbe, D. Duflot, J.P. Flament, J.H.D. Eland, J. Chem. Phys. 99, 6590 (1993)CrossRefADSGoogle Scholar
  20. 20.
    D. Duflot, J.-M. Robbe, J.-P. Flament, J. Chem. Phys. 102, 355 (1995)CrossRefADSGoogle Scholar
  21. 21.
    J.A. Pople, M.J. Frisch, K. Raghavachari, P.V.R. Schleyer, J. Comput. Chem. 3, 468 (1982)CrossRefGoogle Scholar
  22. 22.
    E.M.-L. Ohrendorf, F. Tarantelli, S.L. Cederbaum, J. Chem. Phys. 92, 2984 (1990)CrossRefADSGoogle Scholar
  23. 23.
    Y.-K. Kim, K.K. Irikura, M.A. Ali, J. Res. Natl. Stand. Technol. 107, 63 (2002)Google Scholar
  24. 24.
    H. Deutsch, K. Becker, P. Defrance, M. Probst, J. Limtrakul, T.D. Märk, Eur. Phys. J. D 38, 489 (2006)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • H. Cherkani-Hassani
    • 1
  • D. S. Belic
    • 1
    • 2
  • J. J. Jureta
    • 1
    • 3
  • J. Lecointre
    • 1
    • 4
  • P. Defrance
    • 1
  1. 1.Université Catholique de Louvain, Institute of Condensed Matter and NanosciencesLouvain-la-NeuveBelgium
  2. 2.Faculty of PhysicsBelgradeSerbia
  3. 3.Institute of PhysicsBelgradeSerbia
  4. 4.Department of ChemistryDurham UniversityDurhamUK

Personalised recommendations