Advertisement

The European Physical Journal D

, Volume 57, Issue 3, pp 439–445 | Cite as

The entanglement dynamics of interacting qubits embedded in a spin environment with Dzyaloshinsky-Moriya term

  • W. L. You
  • Y. L. Dong
Quantum Information

Abstract

We investigate the entanglement dynamics of two interacting qubits in a spin environment, which is described by an XY model with Dzyaloshinsky-Moriya (DM) interaction. The competing effects of environmental noise and interqubit coupling on entanglement generation for various system parameters are studied. We find that the entanglement generation is suppressed remarkably in weak-coupling region at quantum critical point (QCP). However, the suppression of the entanglement generation at QCP can be compensated both by increasing the DM interaction and by decreasing the anisotropy of the spin chain. Beyond the weak-coupling region, there exist resonance peaks of concurrence when the system-bath coupling equals to external magnetic field. We attribute the presence of resonance peaks to the flat band of the self-Hamiltonian. These peaks are highly sensitive to anisotropy parameter and DM interaction.

Keywords

Resonance Peak Spin Chain Quantum Critical Point Entanglement Dynamic Spin Bath 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.H. Bennett, S.J. Wiesner, Phys. Rev. Lett. 69, 2881 (1992) Google Scholar
  2. C.H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, W.K. Wootters, Phys. Rev. Lett. 70, 1895 (1993) Google Scholar
  3. R. Jozsa, N. Linden, Proc. R. Soc. Lond. A 459, 2011 (2003) Google Scholar
  4. L.-M. Duan, E. Demler, M.D. Lukin, Phys. Rev. Lett. 91, 090402 (2003) Google Scholar
  5. M.J. Hartmann, F.G.S.L. Brandão, M.B. Plenio, Phys. Rev. Lett. 99, 160501 (2007) Google Scholar
  6. T.J. Osborne, M.A. Nielsen, Phys. Rev. A 66, 032110 (2002) Google Scholar
  7. A. Osterloh, L. Amico, G. Falci, R. Fazio, Nature 416, 608 (2002) Google Scholar
  8. D. Gunlycke, V.M. Kendon, V. Vedral, S. Bose, Phys. Rev. A 64, 042302 (2001) Google Scholar
  9. M.C. Arnesen, S. Bose, V. Vedral, Phys. Rev. Lett. 87, 017901 (2001) Google Scholar
  10. C.L. Zhang, S.Q. Zhu, J. Ren, Phys. Lett. A 373, 3522 (2009) Google Scholar
  11. X.G. Wang, Phys. Rev. A 64, 012313 (2001) Google Scholar
  12. K.M. O’Connor, W.K. Wootters, Phys. Rev. A 63, 052302 (2001) Google Scholar
  13. S.J. Gu, S.S. Deng, Y.Q. Li, H.Q. Lin, Phys. Rev. Lett. 93, 086402 (2004) Google Scholar
  14. H.T. Quan, Z. Song, X.F. Liu, P. Zanardi, C.P. Sun, Phys. Rev. Lett. 96, 140604 (2006) Google Scholar
  15. R. Orús, Phys. Rev. Lett. 100, 130502 (2008) Google Scholar
  16. L. Amico, R. Fazio, A. Osterloh, V. Vedral, Rev. Mod. Phys. 80, 517 (2008) Google Scholar
  17. M.B. Plenio, S.F. Huelga, Phys. Rev. Lett. 88, 197901 (2002) Google Scholar
  18. S. Bose, P.L. Knight, M.B. Plenio, V. Vedral, Phys. Rev. Lett. 83, 5158 (1999) Google Scholar
  19. X.X. Yi, H.T. Cui, L.C. Wang, Phys. Rev. A 74, 054102 (2006) Google Scholar
  20. Q. Ai, T. Shi, G.L. Long, C.P. Sun, Phys. Rev. A 78, 022327 (2008) Google Scholar
  21. W.H. Zurek, Phys. Today 44, 36 (1991) Google Scholar
  22. T. Yu, J.H. Eberly, Science 323, 598 (2009) Google Scholar
  23. A. Hutton, S. Bose, Phys. Rev. A 69, 042312 (2004) Google Scholar
  24. F.M. Cucchietti, J.P. Paz, W.H. Zurek, Phys. Rev. A 72, 052113 (2005) Google Scholar
  25. W.-L. You, W.-L. Lu, Phys. Lett. A 373, 1444 (2009) Google Scholar
  26. Z. Sun, X. Wang, C.P. Sun, Phys. Rev. A 75, 062312 (2007) Google Scholar
  27. W.W. Cheng, J.M. Liu, Phys. Rev. A 79, 052320 (2009) Google Scholar
  28. X.S. Ma, A.M. Wang, Y. Cao, Phys. Rev. B 76, 155327 (2007) Google Scholar
  29. X.S. Ma, H.S. Cong, J.Y. Zhang, A.M. Wang, Eur. Phys. J. D 48, 285 (2008) Google Scholar
  30. E. Lieb, T. Schultz, D. Mattis, Ann. Phys. 16, 407 (1961) Google Scholar
  31. I. Dzyaloshinsky, J. Phys. Chem. Sol. 4, 241 (1958) Google Scholar
  32. T. Moriya, Phys. Rev. Lett. 4, 228 (1960) Google Scholar
  33. P. Jordan, E. Wigner, Z. Phys. 47, 631 (1928) Google Scholar
  34. S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, UK, 2000) Google Scholar
  35. Z.G. Yuan, P. Zhang, S.S. Li, Phys. Rev. A 76, 042118 (2007) Google Scholar
  36. W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998) Google Scholar
  37. S.J. Gu, H.Q. Lin, Y.Q. Li, Phys. Rev. A 68, 042330 (2003) Google Scholar
  38. S.J. Gu, G.S. Tian, H.Q. Lin, Phys. Rev. A 71, 052322 (2005) Google Scholar
  39. M. Kargarian, R. Jafari, A. Langari, Phys. Rev. A 79, 042319 (2009) Google Scholar
  40. F.M. Cucchietti, J.P. Paz, W.H. Zurek, Phys. Rev. A 72, 052113 (2005) Google Scholar
  41. F.M. Cucchietti, S. Fernandez-Vidal, J.P. Paz, Phys. Rev. A 75, 032337 (2007) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.School of Physical Science and Technology, Suzhou UniversitySuzhouJiangsu, P.R. China

Personalised recommendations