Advertisement

The European Physical Journal D

, Volume 57, Issue 3, pp 411–418 | Cite as

X-ray spontaneous emission control by 1-dimensional photonic bandgap structure

  • J.-M. André
  • P. Jonnard
Optical Phenomena and Photonics

Abstract

The possibility of controlling the X-ray spontaneous emission of atoms embedded in a 1-dimensional photonic bandgap structure by the so-called Purcell effect, is studied. Calculations of the spontaneously emitted power are presented from Fermi’s golden rule in the framework of the Wigner-time approach extended to absorbing media. Numerical simulations are compared to experimental results for the case of the K emission from silicon atoms excited by electrons within a Mo/Si multilayer Bragg reflector. The inhibition or enhancement of X-ray emission from such structures appear to be feasible.

Keywords

Spontaneous Emission Bragg Angle Detection Angle Spontaneous Emission Rate Complex Transmission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.M. Purcell, Phys. Rev. 69, 681 (1946) Google Scholar
  2. J.P. Dowling, C.M. Bowden, Phys. A 46, 612 (1992) Google Scholar
  3. M. Scalora, J.P. Dowling, M. Tocci, M.J. Bloemer, C.M. Bowden, J.W. Hauss, Appl. Phys. B 60, S57 (1995) Google Scholar
  4. M.D. Tocci, M. Scalora, M.J. Bloemer, J.P. Dowling, C.M. Bowden, Phys. Rev. A 53, 2799 (1996) Google Scholar
  5. A.V. Medvedev, N.A. Feoktiskov, A.B. Pevtsov, V.G. Golubev, Semiconductors 39, 1356 (2005) Google Scholar
  6. H. Yokoyama, Science 256, 66 (1992) Google Scholar
  7. C. Sibilia, I.S. Nefedov, M. Scarola, M. Bertolli, J. Opt. Soc. Am. B 15, 1947 (1998) Google Scholar
  8. J.-M. André, R. Barchewitz, Recent. Res. Devel. Optics 2, 645 (2002) Google Scholar
  9. P. Jonnard, J.-M. André, C. Bonnelle, F. Bridou, B. Pardo, Phys. Rev. A 68, 032505 (2003) Google Scholar
  10. J.-M. André, P. Jonnard, B. Pardo, Phys. Rev. A 70, 012503 (2004) Google Scholar
  11. P. Jonnard, J.-M. André, C. Bonnelle, F. Bridou, B. Pardo, Appl. Phys. Lett. 81, 1524 (2002) Google Scholar
  12. A. Yariv, P. Yeh, J. Opt. Soc. Am. 67, 438 (1997) Google Scholar
  13. J.M. Bendickson, J.P. Dowling, M. Scalora, Phys. Rev. E 53, 4107 (1996) Google Scholar
  14. J.P. Dowling, IEEE Proc. Optoelectron. 145, 420 (1998) Google Scholar
  15. J.-M. André, P. Jonnard, J. Mod. Opt. 56, 1562 (2009) Google Scholar
  16. B. Pardo, T. Megademini, J.-M. André, Rev. Phys. Appl. 23, 1579 (1988) Google Scholar
  17. P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988), Chap. 3 Google Scholar
  18. J.-M. André, B. Pardo, Opt. Commun. 66, 249 (1988) Google Scholar
  19. http://henke.lbl.gov/optical_constants/ Google Scholar
  20. J.L. Campbell, T. Papp, At. Data Nucl. Data Tables 77, 1 (2001) Google Scholar
  21. I. Alvarado-Rodriguez, P. Halevi, A.S. Sanchez, Phys. Rev. E 63, 056613 (2001) Google Scholar
  22. J.R. Zurita-Sanchez, A.S. Sanchez, P. Halevi, Phys. Rev. E 66, 046613 (2001) Google Scholar
  23. P. Halevi, A.S. Sanchez, Opt. Commun. 251, 109 (2005) Google Scholar
  24. R. Benbalagh, J.-M. André, R. Barchewitz, P. Jonnard, G. Julié, L. Mollard, G. Rolland, C. Rémond, P. Troussel, R. Marmoret, E.O. Filatova, Nucl. Instrum. Meth. A 541, 590 (2005) Google Scholar
  25. J.D. Jackson, Classical Electrodynamics, 2nd edn. (Wiley, New York, 1975), Chap. 6 Google Scholar
  26. C.-T. Tai, Dyadic Green Functions in Electromagnetic Theory, 2nd edn. (IEEE, New York, 1994) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Laboratoire de Chimie Physique – Matière et Rayonnement, UPMC Univ. Paris 6Paris Cedex 05France

Personalised recommendations