The European Physical Journal D

, Volume 58, Issue 1, pp 105–116 | Cite as

Impact-parameter-dependent stopping of swift ions

III. Bunching and packing in energy-loss straggling
Atomic and Molecular Collisions

Abstract

Bunching denotes a contribution to the fluctuation in electronic energy loss (straggling) of an ion penetrating through a medium composed of multiple-electron atoms. Bunching is neglected in conventional straggling models which assume single-electron excitations. Packing denotes another correction to conventional straggling models which assume the atoms of the stopping medium to be distributed at random. The packing correction is known to be positive for molecular gases but has been asserted to be negative for condensed media. Estimates of the two effects, based on expressions for impact-parameter-dependent energy loss derived in paper 1 of this series, are reported here. Both effects are approximately proportional to the square of the stopping cross section and, hence, large for high-Z ions. Bunching may be the dominating contribution to straggling in gases for high-Z ions. For solids the relative significance of bunching and packing depends on the structure and atomic numbers of the target material. Sizable corrections have been found, which tend to increase as a function of the atomic numbers of ion and target.

Keywords

Energy Loss Impact Parameter Equilibrium Charge Target Electron Packing Correction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Bohr, Philos. Mag. 30, 581 (1915)Google Scholar
  2. 2.
    J. Lindhard, A.H. Sørensen, Phys. Rev. A 53, 2443 (1996)CrossRefADSGoogle Scholar
  3. 3.
    P. Sigmund, Particle penetration and radiation effects Springer Series in Solid-State Sciences (Springer, Berlin, 2006), Vol. 151Google Scholar
  4. 4.
    Q. Yang, D.J. O’Connor, Z. Wang, Nucl. Instrum. Meth. B 61, 149 (1991)CrossRefADSGoogle Scholar
  5. 5.
    P. Sigmund, Phys. Rev. A 14, 996 (1976)CrossRefADSGoogle Scholar
  6. 6.
    P. Sigmund, Mat. Fys. Medd. Dan. Vid. Selsk. 40, 1 (1978)Google Scholar
  7. 7.
    F. Besenbacher, J.U. Andersen, E. Bonderup, Nucl. Instrum. Meth. 168, 1 (1980)CrossRefADSGoogle Scholar
  8. 8.
    P. Sigmund, A. Schinner, Eur. Phys. J. D 23, 201 (2003)CrossRefADSGoogle Scholar
  9. 9.
    O. Vollmer, Nucl. Instrum. Meth. 121, 373 (1974)CrossRefADSGoogle Scholar
  10. 10.
    B. Efken, D. Hahn, D. Hilscher, G. Wüstefeld, Nucl. Instrum. Meth. 129, 219 (1975)CrossRefADSGoogle Scholar
  11. 11.
    P. Sigmund, Nucl. Instrum. Meth. B 69, 113 (1992)CrossRefADSGoogle Scholar
  12. 12.
    P. Sigmund, A. Schinner, Eur. Phys. J. D 12, 425 (2000)CrossRefADSGoogle Scholar
  13. 13.
    P. Sigmund, A. Schinner, Nucl. Instrum. Meth. B 195, 64 (2002)CrossRefADSGoogle Scholar
  14. 14.
    A. Schinner, P. Sigmund, Eur. Phys. J. D 56, 41 (2010)CrossRefADSGoogle Scholar
  15. 15.
    P.L. Grande, G. Schiwietz, Phys. Rev. A 44, 2984 (1991)CrossRefADSGoogle Scholar
  16. 16.
    J. Lindhard, Mat. Fys.Medd. Dan. Vid. Selsk. 28, 1 (1954)MathSciNetGoogle Scholar
  17. 17.
    E. Bonderup, P. Hvelplund, Phys. Rev. A 4, 562 (1971)CrossRefADSGoogle Scholar
  18. 18.
    W.K. Chu, Phys. Rev. A 13, 2057 (1976)CrossRefADSGoogle Scholar
  19. 19.
    P. Sigmund, A. Schinner, Nucl. Instrum. Meth. B 174, 535 (2001)CrossRefADSGoogle Scholar
  20. 20.
    P.L. Grande, G. Schiwietz, CasP version 4.0 (2008), http://www.helmholtz-berlin.de/people/gregor-schiwietz/casp_en.html
  21. 21.
    F. Besenbacher, H.H. Andersen, P. Hvelplund, H. Knudsen, Mat. Fys. Medd. Dan. Vid. Selsk. 40, 1 (1981)Google Scholar
  22. 22.
    J.B. Malherbe, H.W. Alberts, Nucl. Instrum. Meth. 192, 559 (1982)CrossRefADSGoogle Scholar
  23. 23.
    S.P. Møller, A. Csete, T. Ichioka, H. Knudsen, H.P.E. Kristiansen, U.I. Uggerhøj, H.H. Andersen, P. Sigmund, A. Schinner, Eur. Phys. J. D 46, 89 (2008)CrossRefADSGoogle Scholar
  24. 24.
    L.G. Glazov, P. Sigmund, A. Schinner, Nucl. Instrum. Meth. B 195, 183 (2002)CrossRefADSGoogle Scholar
  25. 25.
    P. Sigmund, Phys. Rev. A 56, 3781 (1997)CrossRefADSGoogle Scholar
  26. 26.
    H. Ogawa, I. Katayama, I. Sugai, Y. Haruyama, M. Saito, K. Yoshida, M. Tosaki, Nucl. Instrum. Meth. B 115, 66 (1996)CrossRefADSGoogle Scholar
  27. 27.
    L. Glazov, P. Sigmund, Nucl. Instrum. Meth. B 170, 39 (2000)CrossRefADSGoogle Scholar
  28. 28.
    G. Sidenius, N. Andersen, P. Sigmund, F. Besenbacher, J. Heinemeier, P. Hvelplund, H. Knudsen, Nucl. Instrum. Meth. 134, 597 (1976)CrossRefADSGoogle Scholar
  29. 29.
    P. Sigmund, Mat. Fys. Medd. Dan. Vid. Selsk. 39, 1 (1977)Google Scholar
  30. 30.
    P. Sigmund, in Interaction of charged particles with solids and surfaces, A. Gras-Marti, H.M. Urbassek, N. Arista, F. Flores, NATO ASI Series, Vol. 271 (Plenum Press, New York, 1991), pp. 73–144Google Scholar
  31. 31.
    J.H.R. dos Santos, P.L. Grande, M. Behar, J.F. Dias, N.R. Arista, J.C. Eckardt, G.H. Lantschner, Phys. Rev. A 68, 042903 (2003)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of Physics and ChemistryUniversity of Southern DenmarkOdense MDenmark
  2. 2.Institut f. Experimentalphysik, Johannes-Kepler-UniversitätLinz-AuhofAustria

Personalised recommendations