The European Physical Journal D

, Volume 56, Issue 3, pp 359–367 | Cite as

Fast wave heating in a mirror during plasma build-up

  • V. E. Moiseenko
  • N. B. Dreval
  • O. Ågren
  • K. N. Stepanov
  • A. V. Burdakov
  • P. V. Kalinin
  • V. I. Tereshin
Plasma Physics

Abstract

A heating method for partially ionized plasma has been described in reference [V.E. Moiseenko, Sov. J. Plasma Phys. 12, 427 (1986)]. It exploits the collisional damping of fast waves that is large owing to the high rate of charge exchange collisions. Since the time of heating is limited by the duration of neutral gas ionization, the heating needs to be strong enough to achieve a high final ion temperature. This heating method has been studied numerically in the framework of MHD-like (magneto-hydrodynamic) equations in inhomogeneous cylindrical plasma. The influences of the ratio of the mean free path of the neutral atoms to the plasma radius, the initial ion concentration, the characteristics of the interaction of the neutral atoms with the chamber wall and other parameters on the plasma heating dynamics are examined. A scenario for RF plasma heating in one central cell of the multi-mirror device GOL3 (Novosibirsk, Russia) is developed, in which the final ion temperature exceeds the ion oscillation energy in the RF field by one order of magnitude. The energy efficiency is high; only a small portion of the power is transferred by the neutral atoms to the chamber wall.

Keywords

Charge Exchange Neutral Atom Ionization Rate Oscillation Energy Plasma Bunch 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V.E. Golant, V.I. Fedorov, RF Plasma Heating in Toroidal Fusion Devices (Plenum, New York, 1989)Google Scholar
  2. 2.
    T.H. Stix, Waves in Plasmas (Academic Press, New York, 1997)Google Scholar
  3. 3.
    V.E. Moiseenko, Sov. J. Plasma Phys. 12, 427 (1986)Google Scholar
  4. 4.
    L.M. Biberman, V.S. Vorob’ev, I.T. Yakubov, Kinetics of Nonequilibrium Low Temperature Plasmas (Plenum, New York, 1987)Google Scholar
  5. 5.
    A. Mori, J. Mori, K. Ohya, J. Phys B: At. Mol. Phys. 20, 1215 (1987)CrossRefADSGoogle Scholar
  6. 6.
    V.V. Izmodenov, Yu.G. Malama, A.P. Kalinin, M. Gruntman, R. Lallement, I.P. Rodinova, Astrophys. Space Sci. 274, 71 (2000)CrossRefADSGoogle Scholar
  7. 7.
    A.V. Arzhannikov et al., Transactions of Fusion Technology 39, 17 (2001)Google Scholar
  8. 8.
    M.P. Vasil’ev, L.I. Grigor’eva, A.V. Longinov, B.I. Smerdov, V.V. Chechkin, Sov. Phys. JETP 27, 882 (1968)ADSGoogle Scholar
  9. 9.
    G.S. Voronov, At. Data Nucl. Data Tables 65, 1 (1997)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • V. E. Moiseenko
    • 1
    • 2
  • N. B. Dreval
    • 1
    • 2
  • O. Ågren
    • 1
  • K. N. Stepanov
    • 2
  • A. V. Burdakov
    • 3
  • P. V. Kalinin
    • 3
  • V. I. Tereshin
    • 2
  1. 1.Ångström laboratory, Uppsala UniversityUppsalaSweden
  2. 2.IPP NSC Kharkov Institute of Physics and TechnologyKharkivUkraine
  3. 3.Budker Institute of Nuclear PhysicsNovosibirskRussia

Personalised recommendations