Advertisement

Head-on collision of ion thermal solitary waves in pair-ion plasmas containing charged dust impurities

Plasma Physics

Abstract.

In the present research paper, the study of the head-on collision between two ion thermal solitary waves is investigated in a two-fluid (i.e., a pair-ion) plasma consisting of positive and negative ions as well as a fraction of stationary (positively/negatively) charged dust impurities, using the extended Poincaré-Lighthill-Kuo method. The effects of the concentration of charged dust impurities and the positive-to-negative ion temperature ratio on the solitary waves collisions are investigated. It is found that the phase shift is significantly affected by the presence of the positive-to-negative ion temperature ratio and positively/negatively charged dust grains.

Keywords

Soliton Phase Shift Solitary Wave Charged Dust Charge Dust Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    P.K. Shukla, L. Stenflo, Phys. Plasmas 12, 044503 (2005)CrossRefADSGoogle Scholar
  2. 2.
    W. Oohara, R. Hatakeyama, Phys. Rev. Lett. 91, 205005 (2003)CrossRefADSGoogle Scholar
  3. 3.
    W. Oohara, R. Hatakeyama, Phys. Rev. Lett. 95, 175003 (2005)CrossRefADSGoogle Scholar
  4. 4.
    W. Oohara, Y. Kuwabara, R. Hatakeyama, Phys. Rev. E 7, 056403 (2007)CrossRefADSGoogle Scholar
  5. 5.
    A. Esfandyari-Kalajahi, I. Kourakis, P.K. Shukla, Phys. Plasmas 13, 122310 (2006)CrossRefADSGoogle Scholar
  6. 6.
    W.M. Moslem, P.K. Shukla, Phys. Plasmas 13, 122104 (2006)CrossRefADSGoogle Scholar
  7. 7.
    W.M. Moslem, P.K. Shukla, Phys. Lett. A 362, 463 (2007)CrossRefADSGoogle Scholar
  8. 8.
    R. Sabry, Phys. Plasmas 15, 092101 (2008)CrossRefADSGoogle Scholar
  9. 9.
    T. Maxworthy, J. Fluid Mech. 96, 47 (1980)CrossRefADSGoogle Scholar
  10. 10.
    K.E. Lonngren, Opt. Quantum Electron. 30, 615 (1998)CrossRefGoogle Scholar
  11. 11.
    Y. Nakamoura, H. Bailung, K.E. Lonngren, Phys. Plasmas 6, 3466 (1999)CrossRefADSGoogle Scholar
  12. 12.
    S.C. Tsang, K.S. Chiang, K.W. Chow, Opt. Commun. 229, 431 (2004)CrossRefADSGoogle Scholar
  13. 13.
    H. Demiray, Appl. Math. Lett. 18, 942 (2005)CrossRefMathSciNetGoogle Scholar
  14. 14.
    C.H. Su, R.M. Mirie, J. Fluid Mech. 98, 509 (1980)MATHCrossRefMathSciNetADSGoogle Scholar
  15. 15.
    G.X. Huang, M.G. Velarde, Phys. Rev. E 53, 2988 (1996)CrossRefADSGoogle Scholar
  16. 16.
    J.K. Xue, Phys. Rev. E 69, 016403 (2004)CrossRefADSGoogle Scholar
  17. 17.
    J.N. Han, X.X. Yang, D.X. Tian, W.S. Duan, Phys. Lett. A 372, 4817 (2008)CrossRefADSGoogle Scholar
  18. 18.
    J.N. Han, X.X. Yang, S.C. Li, W.S. Duan, Eur. Phys. J. D 47, 197 (2008)CrossRefADSGoogle Scholar
  19. 19.
    N.J. Zabusky, M.D. Kruskal, Phys. Rev. Lett. 15, 240 (1965)CrossRefADSGoogle Scholar
  20. 20.
    C. Yinhua, M.Y. Yu, Phys. Plasmas 1, 1868 (1994)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Theoretical Physics Group, Physics DepartmentFaculty of Science, Mansoura UniversityDamiettaEgypt

Personalised recommendations