Advertisement

Quantum entanglement in a soluble two-electron model atom

  • R. J. Yaüez
  • A. R. Plastino
  • J. S. Dehesa
Quantum Information

Abstract.

We investigate the entanglement properties of bound states in an exactly soluble two-electron model, the Moshinsky atom. We present exact entanglement calculations for the ground, first and second excited states of the system. We find that these states become more entangled when the relative inter-particle interaction becomes stronger. As a general trend, we also observe that the entanglement of the eigenstates tends to increase with the states’ energy. There are, however, “entanglement level-crossings” where the entanglement of a state becomes larger than the entanglement of other states with higher energy. In the limit of weak interaction, we also compute (exactly) the entanglement of higher excited states. Excited states with anti-parallel spins are found to involve a considerable amount of entanglement even for an arbitrarily weak (but non zero) interaction. This minimum amount of entanglement increases monotonically with the state’s energy. Finally, the connection between entanglement and the Hartree-Fock approximation in the Moshinsky model is addressed. The quality of the ground-state Hartree-Fock approximation is shown to deteriorate, and the corresponding correlation energy to grow, as the entanglement of the (exact) ground state increases. The present work goes beyond previous related studies because we fully take into account the identical character of the two constituting particles in the entanglement calculations, and provide analytical, exact results both for the ground and the first few excited states.

Keywords

Wave Function Pure State Correlation Energy Quantum Entanglement Slater Determinant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    C. Das, K. Bhattacharyya, Phys. Rev. A 79, 012107 (2009)CrossRefADSGoogle Scholar
  2. 2.
    E. Romera, A. Nagy, Phys. Lett. A 372, 6823 (2008)CrossRefMathSciNetADSGoogle Scholar
  3. 3.
    F. Carlier, A. Mandilara, A. Sarfati, J. Phys. B: At. Mol. Opt. Phys. 40, S199 (2007)CrossRefADSGoogle Scholar
  4. 4.
    J.S. Dehesa, R. Gonzalez-Ferez, P. Sanchez-Moreno, J. Phys. A: Math. Theor. 40, 1845 (2007)MATHCrossRefMathSciNetADSGoogle Scholar
  5. 5.
    O. Osenda, P. Serra, Phys. Rev. A 75, 042331 (2007)CrossRefADSGoogle Scholar
  6. 6.
    A. Nagy, Chem. Phys. Lett. 425, 154 (2006)CrossRefADSGoogle Scholar
  7. 7.
    C. Amovilli, N.H. March, Phys. Rev. A 69, 054302 (2004)CrossRefADSGoogle Scholar
  8. 8.
    R. Gonzalez-Ferez, J.S. Dehesa, Phys. Rev. Lett. 91, 113001 (2003)CrossRefADSGoogle Scholar
  9. 9.
    A.R. Plastino, A. Plastino, Phys. Lett. A 181, 446 (1993)CrossRefMathSciNetADSGoogle Scholar
  10. 10.
    N. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge, University Press, Cambridge 2000).MATHGoogle Scholar
  11. 11.
    I. Bengtsson, K. Zyczkowski, Geometry of Quantum States: An Introduction to Quantum Entanglement (Cambridge University Press, Cambridge, 2006)MATHGoogle Scholar
  12. 12.
    V. Aquilanti, A.C.P. Bitencourt, C.D.S. Ferreira, A. Marzuoli, M. Ragni, Phys. Scr. 78, 058103 (2008)CrossRefADSGoogle Scholar
  13. 13.
    S. Luo, Z. Zhang, Phys. Lett. A 315, 189 (2003)MATHCrossRefMathSciNetADSGoogle Scholar
  14. 14.
    J. Gemmer, M. Michel, G. Mahler, Quantum Thermodynamics (Berlin, Springer-Verlag, 2004)MATHGoogle Scholar
  15. 15.
    M. Schlosshauer, Decoherence and the Quantum-to-Classical Transition (Berlin, Springer-Verlag, 2007)Google Scholar
  16. 16.
    C. Zander, A.R. Plastino, A. Plastino, M. Casas, J. Phys. A: Math. Theor. 40, 2861 (2007)MATHCrossRefMathSciNetADSGoogle Scholar
  17. 17.
    M. Moshinsky, Am. J. Phys. 36, 52 (1968); Erratum: M. Moshinsky, Am. J. Phys. 36, 763 (1968)CrossRefADSGoogle Scholar
  18. 18.
    C. Amovilli, N.H. March, Phys. Rev. A 67, 022509 (2003)CrossRefADSGoogle Scholar
  19. 19.
    M. Srednicki, Phys. Rev. Lett. 71, 666 (1993)MATHCrossRefMathSciNetADSGoogle Scholar
  20. 20.
    P. Zanardi, C. Zalka, L. Faoro, Phys. Rev. A 62, 030301 (2000)CrossRefMathSciNetADSGoogle Scholar
  21. 21.
    Y.S. Weinstein, C.S. Hellberg, Phys. Rev. Lett. 95, 030501 (2005)CrossRefMathSciNetADSGoogle Scholar
  22. 22.
    J. Naudts, T. Verhulst, Phys. Rev. A 75, 062104 (2007)CrossRefMathSciNetADSGoogle Scholar
  23. 23.
    F. Buscemi, P. Bordone, A. Bertoni, Phys. Rev. A 75, 032301 (2007)CrossRefADSGoogle Scholar
  24. 24.
    K. Eckert, J. Schliemann, D. Bruss, M. Lewenstein, Ann. Phys. 299, 88 (2002)MATHCrossRefMathSciNetADSGoogle Scholar
  25. 25.
    G. Ghirardi, L. Marinatto, Phys. Rev. A 70, 012109 (2004)CrossRefADSGoogle Scholar
  26. 26.
    G. Ghirardi, L. Marinatto, T. Weber, J. Stat. Phys. 108, 49 (2002)MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    V.C.G. Oliveira, H.A.B. Santos, L.A.M. Torres, A.M.C. Souza, Int. J. Quantum Inf. 6, 379 (2008)MATHCrossRefGoogle Scholar
  28. 28.
    A. Borras, A.R. Plastino, M. Casas, A. Plastino, Phys. Rev. A 78, 052104 (2008)CrossRefADSGoogle Scholar
  29. 29.
    A.R. Plastino, D. Manzano, J.S. Dehesa, Europhys. Lett. 86, 20005 (2009)CrossRefADSGoogle Scholar
  30. 30.
    J. Avery, J. Avery, Generalized Sturmians and Atomic Spectra (World Scientific Publishing Co., 2007)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • R. J. Yaüez
    • 1
    • 2
  • A. R. Plastino
    • 1
    • 3
    • 4
  • J. S. Dehesa
    • 1
    • 4
  1. 1.Instituto Carlos I de Física Teórica y Computacional, Universidad de GranadaGranadaSpain
  2. 2.Departamento de Matemática AplicadaUniversidad de GranadaGranadaSpain
  3. 3.National University La Plata, UNLP-CREGLa PlataArgentina
  4. 4.Departamento de Física Atómica, Molecular y NuclearUniversidad de GranadaGranadaSpain

Personalised recommendations