The European Physical Journal D

, Volume 55, Issue 2, pp 509–518 | Cite as

Particle acceleration in cosmic sites

Astrophysics issues in our understanding of cosmic rays
Topical issue: Fundamental Physics and Ultra-High Laser Fields

Abstract

Particles are accelerated in cosmic sites probably under conditions very different from those at terrestrial particle accelerator laboratories. Nevertheless, specific experiments which explore plasma conditions and stimulate particle acceleration carry significant potential to illuminate some aspects of the cosmic particle acceleration process. Here we summarize our understanding of cosmic particle acceleration, as derived from observations of the properties of cosmic ray particles, and through astronomical signatures caused by these near their sources or throughout their journey in interstellar space. We discuss the candidate-source object variety, and what has been learned about their particle-acceleration characteristics. We conclude identifying open issues as they are discussed among astrophysicists. – The cosmic ray differential intensity spectrum across energies from 1010 eV to 1021 eV reveals a rather smooth power-law spectrum. Two kinks occur at the “knee” (≃1015 eV) and at the “ankle” (≃ 3×1018 eV). It is unclear if these kinks are related to boundaries between different dominating sources, or rather related to characteristics of cosmic-ray propagation. Currently we believe that galactic sources dominate up to 1017 eV or even above, and the extragalactic origin of cosmic rays at highest energies merges rather smoothly with galactic contributions throughout the 1015–1018 eV range. Pulsars and supernova remnants are among the prime candidates for galactic cosmic-ray production, while nuclei of active galaxies are considered best candidates to produce ultrahigh-energy cosmic rays of extragalactic origin. The acceleration processes are probably related to shocks formed when matter is ejected into surrounding space from energetic sources such as supernova explosions or matter accreting onto black holes. Details of shock acceleration are complex, as relativistic particles modify the structure of the shock, and simple approximations or perturbation calculations are unsatisfactory. This is where laboratory plasma experiments are expected to contribute, to enlighten the non-linear processes which occur under such conditions.

PACS

96.40 Cosmic rays 95.30 Astrophysical plasma 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T.K. Gaisser, J. Phys. Conf. Ser. 47, 15 (2006)CrossRefADSGoogle Scholar
  2. 2.
    J. Linsley, Phys. Rev. Lett. 10, 146 (1963)CrossRefADSGoogle Scholar
  3. 3.
    V. Hess, Z. Phys. 13, 1084 (1912)Google Scholar
  4. 4.
    I.A. Grenier, A.K. Harding, in Albert Einstein Century International Conference, American Institute of Physics Conference Series (2006), Vol. 861, pp. 630–637ADSGoogle Scholar
  5. 5.
    R.A. Millikan, Annalen der Physik 384, 572 (1926)CrossRefADSGoogle Scholar
  6. 6.
    P. Auger, T. Grivet, Rev. Mod. Phys. 11, 232 (1939)CrossRefADSGoogle Scholar
  7. 7.
    P. Auger et al., Rev. Mod. Phys. 11, 288 (1939)CrossRefADSGoogle Scholar
  8. 8.
    D.E. Brownlee et al., Meteoritics and Planetary Science 32, 22 (1997)Google Scholar
  9. 9.
    R. Battiston, J. Phys. Conf. Ser. 116, 012001 (2008)CrossRefADSGoogle Scholar
  10. 10.
    E.C. Stone et al., Space Sci. Rev. 86, 285 (1998)CrossRefADSGoogle Scholar
  11. 11.
    P. Picozza et al., Astrop. Phys. 27, 296 (2007)CrossRefADSGoogle Scholar
  12. 12.
    M.H. Israel et al., Nucl. Phys. A 758, 201 (2005)CrossRefADSGoogle Scholar
  13. 13.
    S.W. Barwick et al., Astrophys. J. 498, 779 (1998)CrossRefADSGoogle Scholar
  14. 14.
    A.D. Panov et al., Adv. Space Res. 37, 1944 (2006)CrossRefADSGoogle Scholar
  15. 15.
    J. Chang et al., Nature 456, 362 (2008)CrossRefADSGoogle Scholar
  16. 16.
    A. Haungs, H. Rebel, M. Roth, Rep. Prog. Phys. 66, 1145 (2003)CrossRefADSGoogle Scholar
  17. 17.
    T. Antoni et al., Astrop. Phys. 24, 1 (2005)CrossRefADSGoogle Scholar
  18. 18.
    J.W. Cronin, T.K. Gaisser, S.P. Swordy, Scientific American 276, 32 (1997)ADSCrossRefGoogle Scholar
  19. 19.
    A.W. Strong, I.V. Moskalenko, O. Reimer, Astrophys. J. 537, 763 (2000)CrossRefADSGoogle Scholar
  20. 20.
    A.W. Strong, I.V. Moskalenko, O. Reimer, Astrophys. J. 613, 962 (2004)CrossRefADSGoogle Scholar
  21. 21.
    S. Gabici, F.A. Aharonian, Astrophys. Space Sci. 309, 465 (2007)CrossRefADSGoogle Scholar
  22. 22.
    E.G. Berezhko, H.J. Völk, Astron. Astrophys. 419, L27 (2004)CrossRefADSGoogle Scholar
  23. 23.
    T. Padmanabhan, J. Astrophys. Astron. 18, 87 (1997)CrossRefADSGoogle Scholar
  24. 24.
    T. Padmanabhan, Theoretical Astrophysics Astrophysical Processes, Theoretical Astrophysics, Astrophysical Processes, edited by T. Padmanabhan (Cambridge University Press, December 2000).Google Scholar
  25. 25.
    K. Greisen, Phys. Rev. Lett. 16, 748 (1966)CrossRefADSGoogle Scholar
  26. 26.
    G.T. Zatsepin, V.A. Kuz’min, ZhETF Pis’ma Redaktsiiu 4, 114 (1966)ADSGoogle Scholar
  27. 27.
    R. Abbasi et al., Phys. Lett. B 619, 271 (2005)CrossRefADSGoogle Scholar
  28. 28.
    The Pierre Auger Collaboration, Science 318, 938 (2007)CrossRefADSGoogle Scholar
  29. 29.
    A.M. Hillas, e-print ArXiv:astro-ph/0607109 (2006)Google Scholar
  30. 30.
    J. Alcaraz, B. Alpat, G. Ambrosi, et al., Nucl. Instrum. Methods Phys. Res. A 478, 119 (2002)CrossRefADSGoogle Scholar
  31. 31.
    O. Adriani et al., e-print ArXiv:0811.4019 (2008)Google Scholar
  32. 32.
    M.E. Wiedenbeck et al., in Joint SOHO/ACE workshop Solar and Galactic Composition, American Institute of Physics Conference Series, edited by R.F. Wimmer-Schweingruber (2001), Vol. 598, p. 269Google Scholar
  33. 33.
    M.E. Wiedenbeck et al., Space Sci. Rev. 130, 415 (2007)CrossRefADSGoogle Scholar
  34. 34.
    F.W. Stecker, Astrophys. J. 6, 377 (1970)Google Scholar
  35. 35.
    E.C. Stone, M.E. Wiedenbeck, Astrophys. J. 231, 606 (1979)CrossRefADSGoogle Scholar
  36. 36.
    N.E. Yanasak et al., Astrophys. J. 563, 768 (2001)CrossRefADSGoogle Scholar
  37. 37.
    A.W. Strong et al., Astron. Astrophys. 422, L47 (2004)CrossRefADSGoogle Scholar
  38. 38.
    A.W. Strong, I.V. Moskalenko, V.S. Ptuskin, Ann. Rev. Nucl. Part. Sci. 57, 285 (2007)CrossRefADSGoogle Scholar
  39. 39.
    J.G. Luhmann, J.A. Earl, J. Geophys. Res. 78, 1502 (1973)CrossRefADSGoogle Scholar
  40. 40.
    G. Kanbach, C. Reppin, V. Schoenfelder, J. Geophys. Res. 79, 5159 (1974)CrossRefADSGoogle Scholar
  41. 41.
    J.W. Cronin, Rev. Mod. Phys. Suppl. 71, 165 (1999)CrossRefGoogle Scholar
  42. 42.
    A. Spitkovsky, Astrophys. J. 682, L5 (2008)CrossRefADSGoogle Scholar
  43. 43.
    M.A. de Avillez, D. Breitschwerdt, Astron. Astrophys. 436, 585 (2005)CrossRefADSGoogle Scholar
  44. 44.
    M.S. Longair, High energy astrophysics. Stars, the galaxy and the interstellar medium, 2nd edn. (Cambridge University Press, 1994), Vol. 2Google Scholar
  45. 45.
    E.G. Berezhko, D.C. Ellison, Astrophys. J. 526, 385 (1999)CrossRefADSGoogle Scholar
  46. 46.
    D.C. Ellison, Space Sci. Rev. 99, 305 (2001)CrossRefADSGoogle Scholar
  47. 47.
    D.C. Ellison, G. Cassam-Chenaï, Astrophys. J. 632, 920 (2005)CrossRefADSGoogle Scholar
  48. 48.
    S.-H. Lee, T. Kamae, D.C. Ellison, Astrophys. J. 686, 325 (2008)CrossRefADSGoogle Scholar
  49. 49.
    D.C. Ellison, E.G. Berezhko, M.G. Baring, Astrophys. J. 540, 292 (2000)CrossRefADSGoogle Scholar
  50. 50.
    F. Aharonian et al., Astron. Astrophys. 425, L13 (2004)CrossRefADSGoogle Scholar
  51. 51.
    F. Aharonian et al., Nature 439, 695 (2006)CrossRefADSGoogle Scholar
  52. 52.
    M.G. Baring et al., Astrophys. J. 513, 311 (1999)CrossRefADSGoogle Scholar
  53. 53.
    T. Tanimori et al., Astrophys. J. 497, L25+ (1998)CrossRefADSGoogle Scholar
  54. 54.
    F. Aharonian, A. Neronov, Astrophys. Space Sci. 300, 255 (2005)CrossRefADSGoogle Scholar
  55. 55.
    J. Albert et al., Astrophys. J. 665, L51 (2007)CrossRefADSGoogle Scholar
  56. 56.
    Y. Uchiyama, F.A. Aharonian, T. Takahashi, Astron. Astrophys. 400, 567 (2003)CrossRefADSGoogle Scholar
  57. 57.
    J.M. Paredes, e-print ArXiv (2008)Google Scholar
  58. 58.
    J. Dyks, A.K. Harding, B. Rudak, Astrophys. J. 606, 1125 (2004)CrossRefADSGoogle Scholar
  59. 59.
    A.K. Harding, in The First GLAST Symposium, American Institute of Physics Conference Series, edited by S. Ritz, P. Michelson, C.A. Meegan (2007), Vol. 921, pp. 49–53Google Scholar
  60. 60.
    T.K. Gaisser, T. Stanev, Nucl. Phys. A 777, 98 (2006)CrossRefADSGoogle Scholar
  61. 61.
    I.F. Mirabel, L.F. Rodriguez, Nature 371, 46 (1994)CrossRefADSGoogle Scholar
  62. 62.
    V. Bosch-Ramon, F.A. Aharonian, J.M. Paredes, Astron. Astrophys. 432, 609 (2005)CrossRefADSGoogle Scholar
  63. 63.
    A. Neronov, F.A. Aharonian, Astrophys. J. 671, 85 (2007)CrossRefADSGoogle Scholar
  64. 64.
    S.E. Woosley, J.S. Bloom, Ann. Rev. Astron. Astrophys. 44, 507 (2006)CrossRefADSGoogle Scholar
  65. 65.
    P. Meszaros, M.J. Rees, Astrophys. J. 405, 278 (1993)CrossRefADSGoogle Scholar
  66. 66.
    A. Henig et al., Phys. Rev. Lett., in pressGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Max Planck Institut für extraterrestrische PhysikGarchingGermany

Personalised recommendations