Advertisement

The European Physical Journal D

, Volume 54, Issue 1, pp 43–50 | Cite as

Total cross sections of electron scattering by several sulfur-containing molecules OCS, SO2, SF4, SF6, SF5CF3, SO2Cl2 and SO2ClF at 30–5000 eV

  • D. H. Shi
  • J. F. Sun
  • Y. F. Liu
  • Z. L. Zhu
  • H. Ma
Atomic and Molecular Collisions

Abstract

Total cross sections of electron scattering by several sulfur-containing molecules OCS, SO2, SF4, SF6, SF5CF3, SO2Cl2 and SO2ClF are calculated at the Hartree-Fork level employing the modified additivity rule approach. The modified additivity rule approach, which was proposed by Shi et al. [Eur. Phys. J. D 45, 253 (2007); Nucl. Instrum. Meth. B 254, 205 (2007)], takes into consideration that the contributions of the geometric shielding effect vary as the energy of incident electrons, the target’s molecular dimension and the atomic and electronic numbers in the molecule. The present investigations cover the impact energies ranging from 30 to 5000 eV. The quantitative total cross sections are compared with those obtained by experiments and other theories. Good agreement is observed even at energies of several tens of eV. It shows that the modified additivity rule approach is applicable to carry out the total cross section calculations of electron scattering by these sulfur-containing molecules at intermediate and high energies, especially over the energy range above 100 eV or so. In the present calculations, the atoms are still represented by the spherical complex optical potential, which is composed of static, exchange, polarization and absorption terms.

PACS

34.80.Bm Elastic scattering 34.80.-i Electron and positron scattering 34.10.+x General theories and models of atomic and molecular collisions and interactions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Limão-Vieira, F. Blanco, J.C. Oller, A. Muñoz, J.M. Pérez, M. Vinodkumar, G. García, N.J. Mason, Phys. Rev. A 71, 032720 (2005) Google Scholar
  2. L.G. Christophorou, L.A. Pinnaduwag, IEEE Trans. Electr. Inssul. 25, 55 (1990) Google Scholar
  3. D. Raj, Phys. Lett. A 160, 571 (1991) Google Scholar
  4. Y.H. Jiang, J.F. Sun, L.D. Wan, Phys. Rev. A 52, 398 (1995) Google Scholar
  5. Y.F. Liu, D.H. Shi, J.F. Sun, Z.L. Zhu, X.D. Yang, Commun. Theor. Phys. 43, 309 (2005) Google Scholar
  6. H. Ma, D.H. Shi, J.F. Sun, Y.F. Liu, Z.L. Zhu, Commun. Theor. Phys. 45, 697 (2006) Google Scholar
  7. D.H. Shi, Z.L. Zhu, J.F. Sun, X.D. Yang, Y.F. Liu, Y. Zhao, Chin. Phys. Lett. 21, 474 (2004) Google Scholar
  8. K.N. Joshipura, P.M. Patel, J. Phys. B: At. Mol. Opt. Phys. 29, 3925 (1996) Google Scholar
  9. K.N. Joshipura, M. Vinodkumar, Z. Phys. D 41, 133 (1997) Google Scholar
  10. A. Zecca, R. Melissa, R.S. Brusa, G.P. Karwasz, Phys. Lett. A 257, 75 (1999) Google Scholar
  11. F. Blanco, G. García, Phys. Lett. A 317, 458 (2003) Google Scholar
  12. F. Blanco, G. García, Phys. Lett. A 360, 707 (2007) Google Scholar
  13. J.F. Sun, C.L. Du, Y.F. Liu, Phys. Lett. A 314, 150 (2003) Google Scholar
  14. K.N. Joshipura, B.K. Antony, M. Vinodkumar, J. Phys. B: At. Mol. Opt. Phys. 35, 4211 (2002) Google Scholar
  15. K.N. Joshipura, M. Vinodkumar, C.G. Limbachiya, B.K. Antony, Phys. Rev. A 69 022705 (2004) Google Scholar
  16. M. Vinodkumar, K.N. Joshipura, C.G. Limbachiya, B.K. Antony, Eur. Phys. J. D 37, 67 (2006) Google Scholar
  17. Y.H. Jiang, J.F. Sun, L.D. Wan, Phys. Rev. A 62, 062712 (2000) Google Scholar
  18. D.H. Shi, J.F. Sun, Z.L. Zhu, H. Ma, Y.F. Liu, Eur. Phys. J. D 45, 253 (2007) Google Scholar
  19. D.H. Shi, J.F. Sun, Z.L. Zhu, Y.F. Liu, Nucl. Instrum. Meth. B 254, 205 (2007) Google Scholar
  20. D.H. Shi, J.F. Sun, Y.F. Liu, Z.L. Zhu, J. Phys. B: At. Mol. Opt. Phys. 41, 025205 (2008) Google Scholar
  21. S.E. Michelin, T. Kroin, I. Iga, M.G.P. Homem, H.S. Miglio, M.T.J. Lee, J. Phys. B: At. Mol. Opt. Phys. 33, 3293 (2000) Google Scholar
  22. C. Szmytkowski, K. Maciąg, G. Karwasz, D. Filipović, J. Phys. B: At. Mol. Opt. Phys. 22, 525 (1989) Google Scholar
  23. A. Zecca, J.C. Nogueira, G.P. Karwasz, R.S. Brusa, J. Phys. B: At. Mol. Opt. Phys. 28, 477 (1995) Google Scholar
  24. O. Sueoka, A. Hamada, M. Kimura, H. Tanaka, M. Kitajima, J. Chem. Phys. 111, 245 (1999) Google Scholar
  25. C. Szmytkowski, G. Karwasz, K. Maciąg, Chem. Phys. Lett. 107, 481 (1984) Google Scholar
  26. M.S. Dababneh, Y.-F. Hsieh, W.E. Kauppila, C.K. Kwan, T.S. Stein, Proc. 3rd Int. Workshop on Positron (Electron)-Gas Scattering (Detroit, 1985), edited by W.E. Kauppila, T.S. Stein, J.M. Wadehra (World Scientific, Singapore, 1986), p. 251 Google Scholar
  27. C. Szmytkowski, K. Maciąg, Chem. Phys. Lett. 124, 463 (1986) Google Scholar
  28. C. Szmytkowski, P. Możejko, A. Krzysztofowicz, Radiat. Phys. Chem. 68, 307 (2003) Google Scholar
  29. G. Kasperski, P. Możejko, C. Szmytkowski, Z. Phys. D 42, 187 (1997) Google Scholar
  30. C. Makochekanwa, M. Kimura, O. Sueoka, Phys. Rev. A 70, 022702 (2004) Google Scholar
  31. M.S. Dababneh, Y.-F. Hsieh, W.E. Kauppila, C.K. Kwan, S.J. Smith, T.S. Stein, M.N. Uddin, Phys. Rev. A 38, 1207 (1988) Google Scholar
  32. L.G. Christophorou, J.K. Olthoff, J. Phys. Chem. Ref. Data 29, 267 (2000) Google Scholar
  33. A. Zecca, G. Karwasz, R.S. Brusa, Chem. Phys. Lett. 199, 423 (1992) Google Scholar
  34. R.E. Kennerly, R.A. Bonham, M. McMillan, J. Chem. Phys. 70, 2039 (1979) Google Scholar
  35. G.P. Karwasz, R.S. Brusa, A. Zecca, Riv. Nuovo Cimento. 24, 93 (2001) and references herein Google Scholar
  36. C. Szmytkowski, A. Domaracka, P. Możejko, E. Ptasińska-Denga, S. Kwitnewski, J. Phys. B: At. Mol. Opt. Phys. 38, 745 (2005) Google Scholar
  37. C. Szmytkowski, P. Możejko, S. Kwitnewski, A. Domaracka, E. Ptasińska-Denga, J. Phys. B: At. Mol. Opt. Phys. 39, 2571 (2006) Google Scholar
  38. C. Szmytkowski, P. Możejko, S. Kwitnewski, E. Ptasińska-Denga, A. Domaracka, J. Phys. B: At. Mol. Opt. Phys. 38, 2945 (2005) Google Scholar
  39. D. Raj, S. Tomar, J. Phys. B: At. Mol. Opt. Phys. 30, 1989 (1997) Google Scholar
  40. M. Bobeldijk, W.J. van der Zande, P.G. Kistemaker, Chem. Phys. 179, 125 (1994) Google Scholar
  41. D.R. Lide, CRC Handbook of Chemistry and Physics, 74th edn. ( Boca Raton, Chemical Rubber Company, 1993-94) Google Scholar
  42. E. Clementi, C. Roetti, At. Data Nucl. Data Tables 14, 177 (1974) Google Scholar
  43. M.E. Riley, D.G. Truhlar, J. Chem. Phys. 63, 2182 (1975) Google Scholar
  44. X.Z. Zhang, J.F. Sun, Y.F. Liu, J. Phys. B: At. Mol. Opt. Phys. 25, 1893 (1992) Google Scholar
  45. J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981) Google Scholar
  46. G. Staszewska, D.W. Schwenke, D. Thirumalai, D.G. Truhlar, Phys. Rev. A 28, 2740 (1983) Google Scholar
  47. P.A. Kendall, N.J. Mason, G.A. Buchanan, G. Marston, P. Tegeder, A. Dawes, S. Eden, P. Limão-Vieira, D.A. Newnham, Chem. Phys. 287, 137 (2003) Google Scholar
  48. B.K. Antony, K.N. Joshipura, N.J. Mason, J. Phys. B: At. Mol. Opt. Phys. 38, 189 (2005) Google Scholar
  49. S. Hayashi, K. Kuchitsu, Chem. Phys. Lett. 41, 575 (1976) Google Scholar
  50. R.A. Bonham, T. Iijima, J. Phys. Chem. 67, 2266 (1963) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • D. H. Shi
    • 1
  • J. F. Sun
    • 1
    • 2
  • Y. F. Liu
    • 1
  • Z. L. Zhu
    • 1
  • H. Ma
    • 1
  1. 1.College of Physics and Information Engineering, Henan Normal UniversityXinxiangP.R. China
  2. 2.Department of PhysicsLuoyang Normal UniversityLuoyangP.R. China

Personalised recommendations