Advertisement

The European Physical Journal D

, Volume 53, Issue 2, pp 153–161 | Cite as

Coherent population trapping and strong electromagnetically induced transparency resonances on the D1 line of potassium

  • S. Gozzini
  • S. Cartaleva
  • A. Lucchesini
  • C. Marinelli
  • L. Marmugi
  • D. Slavov
  • T. Karaulanov
Atomic Physics

Abstract

In this paper we report the first experimental observation of coherent population trapping (CPT) in thermal potassium vapor in a three levels Λ scheme. We demonstrate that K presents the advantage of a reduced modulation frequency with a large resonance contrast (up to 40%), in comparison to similar approaches with other alkalis. We report also the first evidence of electromagnetically induced transparency (EIT) resonances in K in the so called Hanle configuration. We tested different kinds of cells, demonstrating strong enhancement of the resonance contrast and amplitude for antirelaxation coated and buffered cells containing K vapor: resonance contrast up to 90% (for coated cells) and 65% (for buffered cells) is achieved with a linewidth of about 13 mG, while under similar conditions, the EIT resonance contrast in Cs vapor buffered by Ar gas is about 1%. Such relevant improvement is due to the reduced optical pumping in K, because of the overlapping of the hyperfine levels Doppler profiles, which does not occur in the case of Rb and Cs vapor. For this reason, K can be considered very promising for further CPT and EIT applications, especially for those where optical pumping losses represent a major limiting factor, such as light slowing and magnetometry.

PACS

32.80.Qk Coherent control of atomic interactions with photons 82.53.Kp Coherent spectroscopy of atoms and molecules 32.30.Dx Magnetic resonance spectra 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Affolderbach, M. Stahler, S. Knappe, R. Wynands, Appl. Phys. B 75, 605 (2002); P.D.D. Schwindt, S. Knappe, V. Shah, L. Hollberg, J. Kitching, L.-A. Liew, J. Moreland, Appl. Phys. Lett. 85, 6409 (2004)Google Scholar
  2. S. Knappe, V. Shah, P.D.D. Schwindt, L. Hollberg, J. Kitching, L.-A. Liew, J. Moreland, Appl. Phys. Lett. 85, 1460 (2004)Google Scholar
  3. G. Alzetta, A. Gozzini, L. Moi, G. Orriols, Nuovo Cimento B 36, 5 (1976); E. Arimondo, Prog. Opt. 35, 257 (1996)Google Scholar
  4. D. Budker, D.F. Kimball, V.V. Yashchuk, M. Zolotorev, Phys. Rev. A 65, 055 403 (2002)Google Scholar
  5. C. Andreeva, G. Bevilaqua, V. Biancalana, S. Cartaleva, Y. Dancheva, T. Karaulanov, C. Marinelli, E. Mariotti, L. Moi, Appl. Phys. B 76, 667 (2003)Google Scholar
  6. F. Renzoni, W. Maichen, L. Windholz, E. Arimondo, Phys. Rev. A 55, 3710 (1997)Google Scholar
  7. A.M. Akulshin, S. Barreiro, A. Lezama, Phys. Rev. A 57, 2996 (1998); Y. Dancheva, G. Alzetta, S. Cartaleva, M. Taslakov, Ch. Andreeva, Opt. Commun. 178, 103 (2000); F. Renzoni, C. Zimmermann, P. Verkerk, E. Arimondo, J. Opt. B: Quantum Semiclass. Opt. 3, S7 (2001); A.V. Papoyan, M. Auzinsh, K. Bergmann, Eur. Phys. J. D 21, 63 (2002)Google Scholar
  8. S. Gu, J.A. Behr, M.N. Groves, D. Dhat, Opt. Commun. 220, 365 (2003)Google Scholar
  9. C. Affolderbach, S. Knappe, R. Wynands, A.V. Taichenachev, V.I. Yudin, Phys. Rev. A 65, 043810 (2002)Google Scholar
  10. M. Stähler, R. Wynands, S. Knappe, J. Kitching, L. Hollberg, A. Taichenachev, V. Yudin, Opt. Lett. 27, 1472 (2002)Google Scholar
  11. J.A. Kleinfeld, A.D. Streater, Phys. Rev. A 49, R4301 (1994)Google Scholar
  12. S. Gozzini, A. Lucchesini, Eur. Phys. J. D 28, 157 (2004)Google Scholar
  13. D. Budker, D. Kimball, S. Rochester, V. Yashchuk, Phys. Rev. Lett. 83, 1767 (1999)Google Scholar
  14. C. Andreeva, S. Cartaleva, Y. Dancheva, V. Biancalana, A. Burchianti, C. Marinelli, E. Mariotti, L. Moi, K. Nasyrov, Phys. Rev. A 66, 012502 (2002)Google Scholar
  15. G. Bevilacqua, V. Biancalana, E. Breschi, Y. Dancheva, C. Marinelli, E. Mariotti, L. Moi, Ch. Andreeva, T. Karaulanov, S. Cartaleva, Proc. SPIE 5830, 150 (2005)Google Scholar
  16. D. Budker, D.F. Kimball, S.M. Rochester, V.V. Yashchuk, M. Zolotorev, Phys. Rev. A 62, 043403 (2000)Google Scholar
  17. M.V. Balabas, D. Budker, J. Kitching, P.D.D. Schwindt, J.E. Stalnaker, J. Opt. Soc. Am. B 23, 1001 (2006)Google Scholar
  18. S. Gozzini, P. Sartini, C. Gabbanini, A. Lucchesini, L. Moi, C. Marinelli, G. Alzetta, J.H. Xu, Eur. Phys. J. D 6, 127 (1999)Google Scholar
  19. D.V. Brazhnikov, A.M. Tumaikin, V.I. Yudin, A.V. Taichenachev, J. Opt. Soc. Am. B 22, 57 (2005); D.V. Brazhnikov, A.V. Taichenachev, A.M. Tumaikin, V.I. Yudin, S.A. Zibrov, Ya.O. Dudin, V.V. Vasilev, V.L. Velichansky, JETF Lett. 83, 64 (2006)Google Scholar
  20. E. Figueroa, F. Vewinger, J. Appel, A.I. Lvovsky, Opt. Lett. 31, 2625 (2006)Google Scholar
  21. F. de Tomasi, M. Allegrini, E. Arimondo, G.S. Agarwal, P. Ananthalakshmi, Phys. Rev. A 48, 3820 (1993)Google Scholar
  22. D.F. Phillips, A. Fleischhauer, A. Mair, R.L. Walsworth, M.D. Lukin, Phys. Rev. Lett. 86, 783 (2001)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • S. Gozzini
    • 1
  • S. Cartaleva
    • 2
  • A. Lucchesini
    • 1
  • C. Marinelli
    • 3
  • L. Marmugi
    • 1
  • D. Slavov
    • 2
  • T. Karaulanov
    • 2
    • 4
  1. 1.Istituto per i Processi Chimico-Fisici del Consiglio Nazionale delle Ricerche — Area della Ricerca, via G. Moruzzi 1PisaItaly
  2. 2.Institute of ElectronicsSofiaBulgaria
  3. 3.CNISM Dipartimento di Fisica dell’Università di SienaSienaItaly
  4. 4.Department of PhysicsUniversity of California at BerkeleyBerkeleyUSA

Personalised recommendations