Advertisement

The European Physical Journal D

, Volume 55, Issue 2, pp 359–364 | Cite as

Exploring high-intensity QED at ELI

  • T. Heinzl
  • A. Ilderton
Topical issue: Fundamental Physics and Ultra-High Laser Fields

Abstract

We give a non-technical overview of QED effects arising in the presence of ultra-strong electromagnetic fields highlighting the new prospects provided by a realisation of the ELI laser facility.

PACS

12.20.Fv Experimental tests 42.25.Lc Birefringence 42.50.Xa Optical tests of quantum theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.D. Strickland, G. Mourou, Opt. Commun. 56, 212 (1985)CrossRefADSGoogle Scholar
  2. 2.
    T. Heinzl, A. Ilderton, Opt. Commun. 282, 1879 (2009)CrossRefADSGoogle Scholar
  3. 3.
    K.T. McDonald, Proposal for experimental studies of nonlinear quantum electrodynamics, preprint DOEER-3072-38 (1986), www.hep.princeton.edu/~mcdonald/e144/prop.pdfGoogle Scholar
  4. 4.
    F. Sauter, Z. Phys. 69, 742 (1931)MATHCrossRefADSGoogle Scholar
  5. 5.
    D.L. Burke et al., Phys. Rev. Lett. 79, 1626 (1997)CrossRefADSGoogle Scholar
  6. 6.
    C. Bamber et al., Phys. Rev. D 60, 092004 (1999)CrossRefADSGoogle Scholar
  7. 7.
    G. Breit, J.A. Wheeler, Phys. Rev. 46, 1087 (1934)MATHCrossRefADSGoogle Scholar
  8. 8.
    H.R. Reiss, J. Math. Phys. 3, 59 (1962)MATHCrossRefMathSciNetADSGoogle Scholar
  9. 9.
    G.V. Dunne, From Fields to Strings: Circumnavigating Theoretical Physics, Ian Kogan Memorial Collection, edited by M. Shifman et al., e-print arXiv:hep-th/0406216Google Scholar
  10. 10.
    G.V. Dunne, Eur. Phys. J. D 55, 327 (2009)CrossRefGoogle Scholar
  11. 11.
    J.S. Schwinger, Phys. Rev. 82, 664 (1951)MATHCrossRefMathSciNetADSGoogle Scholar
  12. 12.
    J.S. Toll, The Dispersion Relation for Light and its Application to Problems Involving Electron Pairs, Ph.D. thesis, Princeton, 1952Google Scholar
  13. 13.
    T. Heinzl, O. Schroeder, J. Phys. A 39, 11623 (2006)MATHCrossRefMathSciNetADSGoogle Scholar
  14. 14.
    T. Heinzl, B. Liesfeld, K.U. Amthor, H. Schwoerer, R. Sauerbrey, A. Wipf, Opt. Commun. 267, 318 (2006)CrossRefADSGoogle Scholar
  15. 15.
    E.E. Alp, W. Sturhahn, T.S. Toellner, Hyperfine Interact. 125, 45 (2000)CrossRefGoogle Scholar
  16. 16.
    R.H. Milburn, Phys. Rev. Lett. 10, 75 (1963)CrossRefADSGoogle Scholar
  17. 17.
    J. Ballam et al., Phys. Rev. Lett. 23, 498 (1969); J. Ballam et al., Phys. Rev. Lett. 23, 817 (1969)CrossRefADSGoogle Scholar
  18. 18.
    C. Bula et al. (E144 Collaboration), Phys. Rev. Lett. 76, 3116 (1996)CrossRefADSGoogle Scholar
  19. 19.
    G.M. Shore, Nucl. Phys. B 778, 219 (2007)MATHCrossRefMathSciNetADSGoogle Scholar
  20. 20.
    N.D. Sengupta, Bull. Math. Soc. (Calcutta) 41, 187 (1949); N.D. Sengupta, Bull. Math. Soc. (Calcutta) 44, 175 (1952)MATHGoogle Scholar
  21. 21.
    S.S. Bulanov, N.B. Narozhny, V.D. Mur, V.S. Popov, Phys. Lett. A 330, 1 (2004)MATHCrossRefADSGoogle Scholar
  22. 22.
    R. Schützhold, H. Gies, G.V. Dunne, Phys. Rev. Lett. 101, 130404 (2008)CrossRefMathSciNetADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.University of Plymouth, School of Mathematics and StatisticsPlymouthUK
  2. 2.School of MathematicsDublinIreland

Personalised recommendations