Advertisement

The European Physical Journal D

, Volume 53, Issue 2, pp 123–125 | Cite as

Exact solution of N-dimensional radial Schrödinger equation for the fourth-order inverse-power potential

Atomic Physics

Abstract

Radial Schrödinger equation in N-dimensional Hilbert space with the potential V(r)=ar-1+br-2+cr-3+dr-4 is solved exactly by power series method via a suitable ansatz to the wave function with parameters those also exist in the potential function possibly for the first time. Exact analytical expressions for the energy spectra and potential parameters are obtained in terms of linear combinations of known parameters of radial quantum number n, angular momentum quantum number l, and the spatial dimensions N. Expansion coefficients of the wave function ansatz are generated through the two-term recursion relation for odd/even solutions.

PACS

03.65.Ge Solutions of wave equations: bound states 03.65.-w Quantum mechanics 11.30.Pb Supersymmetry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Yu, S.H. Dong, G.H. Sun, Phys. Lett. A 322, 290 (2004)Google Scholar
  2. H. Klar, J. Phys. B 18, L475 (1885)Google Scholar
  3. H.Y. yang, K.T. Chung, Phys. Rev. A 51, 3621 (1995)Google Scholar
  4. W. Greiner, Quantum Mechanics – An Introduction (Springer-Verlag, Berlin, 1994)Google Scholar
  5. S. Ozcelik, M. Simsek, Phys. Lett. A 152, 145 (1991)Google Scholar
  6. E. Papp, Phys. Lett. A 157, 192 (1991)Google Scholar
  7. S.H. Dong, Z.Q. Ma, G. Esposito, Found. Phys. Lett. A 12, 465 (1999)Google Scholar
  8. S.H. Dong, Phys. Scr. 64, 273 (2001)Google Scholar
  9. A. Chatterjee, Phys. Rev. A 35, 2722 (1987)Google Scholar
  10. R. Sever, C. Tezcan, J. Quant. Spectr. Rad. Trans. 45, 245 (1991)Google Scholar
  11. B. Gonul, O. Ozer, M. Kocak, D. Tutcu, Y. Cancelik, J. Phys. A 34, 8271 (2001)Google Scholar
  12. S.H. Dong, Found. Phys. Lett. 15, 385(2002)Google Scholar
  13. O. Mustafa, Czech J. Phys. 52, 351 (2002)Google Scholar
  14. L.Y. Wang, X.Y. Gu, Z.Q. Ma, S.H. Dong, Found. Phys. Lett. 15, 569 (2002)Google Scholar
  15. S.H. Dong, G.H. Sun, Phys. Lett. A 314, 261 (2003)Google Scholar
  16. S.H. Dong, G.H. Sun, Phys. Scr. 70, 94 (2004)Google Scholar
  17. S.H. Dong, M.L. Cassou, Y. Jiang, W.C. Qiang, Phys. Scr. 71, 436 (2005)Google Scholar
  18. Z.D. Chen, G. Chen, Phys. Scr. 72, 11 (2005)Google Scholar
  19. S.M. Ikhdair, R. Sever, e-print arXiv:quant-ph/0604095v1 2006Google Scholar
  20. S.H. Dong, Factorization Method in Quantum Mechanics, 1st edn. (Springer, Netherlands, 2007)Google Scholar
  21. S.M. Ikhdair, R. Sever, Int. J. Mod. Phys. C 18, 1571 (2007)Google Scholar
  22. S.M. Ikhdair, R. Sever, J. Mol. Struct. Theochem 806, 155 (2007)Google Scholar
  23. S.M. Ikhdair, R. Sever, Ann. Phys. 17, 897 (2008)Google Scholar
  24. S.M. Ikhdair, R. Sever, Int. J. Mod. Phys. C 19, 221 (2008)Google Scholar
  25. S.M. Ikhdair, R. Sever, Cent. Eur. J. Phys. 6, 685 (2008)Google Scholar
  26. S.M. Ikhdair, R. Sever, Cent. Eur. J. Phys. 6, 697 (2008)Google Scholar
  27. S.M. Ikhdair, Chinese J. Phys. 46, 291 (2008)Google Scholar
  28. S.M. Ikhdair, R. Sever, e-print arXiv:quant-ph/0611065 Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of PhysicsNational Institute of Technology (Technical University)KashmirIndia

Personalised recommendations