Advertisement

The European Physical Journal D

, Volume 53, Issue 1, pp 41–50 | Cite as

Exact solutions of the Schrödinger equation for zero energy

Atomic and Molecular Collisions

Abstract

Some new exact solutions of the Schrödinger equation for zero energy are presented for certain nontrivial model potentials. Exact expressions for the different scattering lengths are derived and their differences and similarities are worked out. In particular, the respective distributions of the zeros and poles of the scattering lengths are characterized in detail.

PACS

03.65.Nk Scattering theory 34.20.Cf Interatomic potentials and forces 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.J. Leggett, Rev. Mod. Phys. 73, 307 (2001)Google Scholar
  2. C.J. Pethick, H. Smith, Bose-Einstein Condensation in Dilute Gases (Cambridge University Press, Cambridge, 2002)Google Scholar
  3. L. Pitaevskii, S. Stringari, Bose-Einstein Condensation (Oxford Science Publications, Oxford, 2003)Google Scholar
  4. I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008)Google Scholar
  5. S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 80, 1215 (2008)Google Scholar
  6. M. Block, M. Holthaus, Phys. Rev. A 65, 052102 (2002)Google Scholar
  7. J. Pade, M. Block, M. Holthaus, Phys. Rev. A 68, 063402 (2003)Google Scholar
  8. P. Naidon, F. Masnou-Seeuws, Phys. Rev. A 68, 033612 (2003)Google Scholar
  9. Handbook of Mathematical Functions edited by A. Abramowitz, I.A. Stegun (Dover, New York 1972), Sect. 13Google Scholar
  10. S. Moszkowski et al., Phys. Rev. A 62, 032504 (2000)Google Scholar
  11. S. Geltman, A. Bambini, Phys. Rev. Lett. 86, 3276 (2001)Google Scholar
  12. G. Quéméner, P. Honvault, J.-M. Launay, Eur. Phys. J. D 49, 75 (2008)Google Scholar
  13. T. Zelevinsky, S. Kotochigova, J. We, Phys. Rev. Lett. 100, 043201 (2008)Google Scholar
  14. P.O. Schmidt et al., Phys. Rev. Lett. 91, 193201 (2003)Google Scholar
  15. R. Heidemann et al., Phys. Rev. Lett. 100, 033601 (2008); U. Raitzsch et al., Phys. Rev. Lett. 100, 013002 (2008)Google Scholar
  16. G.F. Gribakin, V.V. Flambaum, Phys. Rev. A 48, 546 (1993)Google Scholar
  17. J. Pade, Eur. Phys. J. D 44, 345 (2007)Google Scholar
  18. L.D. Landau, E.M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory (Pergamon, Oxford 1965)Google Scholar
  19. A.S. Dickinson, R.B. Bernstein, Molec. Phys. 18, 305 (1970)Google Scholar
  20. R. Szmytkowski, J. Phys. A: Math. Gen. 28, 7333 (1995)Google Scholar
  21. B. Gao, Eur. Phys. J. D 31, 283 (2004)Google Scholar
  22. P.M. Morse, Phys. Rev. 34, 57 (1929)Google Scholar
  23. G. Darewych, A.E.S. Green, Phys. Rev. 164, 164 (1967)Google Scholar
  24. J. Lekner, Molec. Phys. 23, 619 (1972)Google Scholar
  25. H. Buchholz, The Confluent Hypergeometric Function (Springer Verlag, Berlin, Heidelberg, New York 1969), Sect. 8Google Scholar
  26. R.M. Kalas, D. Blume, Phys. Rev. A 77, 032703 (2008)Google Scholar
  27. Z. Idziaszek, T. Calarco, P. Zoller, Phys. Rev. A 76, 033409 (2007)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Universität Oldenburg, Institut für PhysikOldenburgGermany

Personalised recommendations