Advertisement

The European Physical Journal D

, Volume 54, Issue 2, pp 205–209 | Cite as

Effect of electron magnetic trapping in a plasma immersion ion implantation system

  • K. G. Kostov
  • M. A. Algatti
  • E. J.D.M. Pillaca
  • M. E. Kayama
  • R. P. Mota
  • R. Y. Honda
Topical issue: 23rd Symposium on Plasma Physics and Technology

Abstract

In this work we describe a two-dimensional computer simulation of magnetic field enhanced plasma immersion implantation system. Negative bias voltage of 10.0 kV is applied to a cylindrical target located on the axis of a grounded vacuum chamber filled with uniform nitrogen plasma. A pair of external coils creates a static magnetic field with main vector component along the axial direction. Thus, a system of crossed E×B field is generated inside the vessel forcing plasma electrons to rotate in azimuthal direction. In addition, the axial variation of the magnetic field intensity produces magnetic mirror effect that enables axial particle confinement. It is found that high-density plasma regions are formed around the target due to intense background gas ionization by the trapped electrons. Effect of the magnetic field on the sheath dynamics and the implantation current density of the PIII system is investigated. By changing the magnetic field axial profile (varying coils separation) an enhancement of about 30% of the retained dose can be achieved. The results of the simulation show that the magnetic mirror configuration brings additional benefits to the PIII process, permitting more precise control of the implanted dose.

PACS

52.77.Dq Plasma-based ion implantation and deposition 52.40.Kh Plasma sheaths 52.55.-s Magnetic confinement and equilibrium 52.65.Rr Particle-in-cell method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.R. Conrad, J. Appl. Phys. 62, 777 (1987) Google Scholar
  2. D.J. Rej, R.J. Faehl, J.N. Matossian, Surf. Coat. Technol. 96, 45 (1997) Google Scholar
  3. D.J. Rej, B.P. Wood, R.J. Faehl, H.H. Fleischmann, J. Vac. Sci. Technol. B 12, 861 (1994) Google Scholar
  4. M. Keidar, O.R. Monteiro, A. Anders, I.D. Boyd, Appl. Phys. Lett. 81, 1183 (2002) Google Scholar
  5. I. Levchenko, M. Romanov, M. Keidar, J. Appl. Phys. 94, 1408 (2003) Google Scholar
  6. K.G. Kostov, J.J. Barroso, IEEE Trans. Plasma Sci. 34, 1127 (2006) Google Scholar
  7. V.P. Tarakanov, User’s Manual for code KARAT, Berkeley (Research Associated Inc., Berkeley, VA, USA, 1994) Google Scholar
  8. A.I. Morozov, L.S. Solovev, Rev. Plasma Phys. 2, 201 (1966) Google Scholar
  9. J. Fajans, Phys. Plasmas 10, 1209 (2003) Google Scholar
  10. R. Goldston, P. Rutherford, Introduction to Plasma Physics (Institute of Physics Publishing, London, 1997), Chap. 3 Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • K. G. Kostov
    • 1
  • M. A. Algatti
    • 1
  • E. J.D.M. Pillaca
    • 1
  • M. E. Kayama
    • 1
  • R. P. Mota
    • 1
  • R. Y. Honda
    • 1
  1. 1.Dept. of Physics and Chemistry, Faculty of Engineering - FEG, State University of Sao Paulo - UNESPGuaratinguetáBrazil

Personalised recommendations