The European Physical Journal D

, Volume 53, Issue 1, pp 69–73 | Cite as

Stoichiometry analysis of titanium oxide coating by LIBS

  • H. Estupiñán
  • D. Y. Peña
  • Y. O. García
  • R. Cabanzo
  • E. Mejía-Ospino
Plasma Physics

Abstract

In this work, laser induced breakdown spectroscopy (LIBS) is used to determine the composition of titanium oxide film produced by anodized of Ti6Al4V alloy. We have used Ti lines in the spectral region between 470–520 nm to determine temperature of the plasma generated on anodized surface of Ti6Al4V alloy for temperature determination by Boltzmann plot method. In order to measure the content of oxygen and titanium ratio on the surface the alloy, we have used the oxygen lines 777.194, 777.417 and 777.539 nm, and titanium lines 780.597 and 782.491 nm observed in an ambient of argon. Finally, we report the possibilities for the determination of the coating chemical composition using LIBS.

PACS

79.20.Ds Laser-beam impact phenomena 78.66.Bz Metals and metallic alloys 52.25.Os Emission, absorption, and scattering of electromagnetic radiation 52.38.Mf Laser ablation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Li, M. Sun, X. Ma, Appl. Surf. Sci. 252, 7503 (2006)Google Scholar
  2. M. Masmoudi, M. Assoul, M. Wery, R. Abdelhedi, F. El Halouani, G. Monteil, Appl. Surf. Sci. 253, 2237 (2006)Google Scholar
  3. J. Li, M. Sun, X. Ma, G. Tang, Wear 241, 1247 (2006)Google Scholar
  4. A. Bengtson, M. Lundholm, J. Anal. At. Spectrom. 3, 879 (1988)Google Scholar
  5. N. Jakubowski, D. Stuewer, J. Anal. At. Spectrom. 7, 951 (1992)Google Scholar
  6. A. Bengtson, J. Anal. At. Spectrom. 11, 829 (1996)Google Scholar
  7. S. Oswald, V. Hoffmannn, G. Ehrlich, Spectrochim. Acta B 49, 1123 (1994)Google Scholar
  8. E. Oxley, C. Yang, W. Harrison, J. Anal. At. Spectrom. 15, 1241 (2000)Google Scholar
  9. K. Song, Y. Lee, J. Sneddon, Appl. Spectrosc. Rev. 37, 89 (2002)Google Scholar
  10. J.M. Vadillo, J.J. Laserna, Spectrochim. Acta B 59, 147 (2004)Google Scholar
  11. D. Bulajic et al., Spectrochim. Acta B 57, 1181 (2002)Google Scholar
  12. D.C.S. Beddows, O. Samek, M. Liska, H.H. Telle, Spectrochim. Acta B 57, 1461 (2002)Google Scholar
  13. A.E. Pichahchy, D.A. Cremers, M.J. Ferris, Spectrochim. Acta B 52, 25 (1997)Google Scholar
  14. I. Bassiotis et al., Spectrochim. Acta B 56, 671 (2001)Google Scholar
  15. S. Palanco, J.J. Laserna, J. Anal. At. Spectrom. 15, 1321 (2000)Google Scholar
  16. A.I. Whitehouse et al., Spectrochim. Acta B 56, 821 (2001)Google Scholar
  17. H.H. Telle et al., Spectrochim. Acta B 56, 947 (2001)Google Scholar
  18. A. Jurado-López, M.D. Luque de Castro, Talanta 59, 409 (2003)Google Scholar
  19. M. Kuzuya, M. Murakami, N. Maruyama, Spectrochim. Acta B 58, 957 (2003)Google Scholar
  20. M.F. Bustamante, C.A. Rinaldi, J.C. Ferrero, Spectrochim. Acta B 57, 303 (2002)Google Scholar
  21. D. Kossakovski, J.L. Beauchamp, Anal. Chem. 72, 4731 (2000)Google Scholar
  22. L. St-Onge, E. Kwong, M. Sabsabi, E.B. Vadas, Spectrochim. Acta B 57, 1131 (2002)Google Scholar
  23. C.A. Smith, M.A. Martínez, D.K. Veirs, D.A. Cremers, Spectrochim. Acta B 57, 929 (2002)Google Scholar
  24. A. Jurado-López, M.D. Luque de Castro, Spectrochim. Acta B 58, 1291 (2003)Google Scholar
  25. F. Colao, R. Fantoni, V. Lazic, V. Spizzichino, Spectrochim. Acta B 57, 1219 (2002)Google Scholar
  26. T. Kim, C.T. Lin, Y. Yoon, J. Phys. Chem. B 102, 4284 (1998)Google Scholar
  27. E. Tognoni, V. Palleschi, M. Corsi, G. Cristoforetti, Spectrochim. Acta B 57, 1115 (2002)Google Scholar
  28. A.K. Rai et al., Spectrochim. Acta B 56, 2371 (2001)Google Scholar
  29. F. Colao, V. Lazic, R. Fantoni, S. Pershin, Spectrochim. Acta B 57, 1167 (2002)Google Scholar
  30. L. St-Onge, V. Detalle, M. Sabsabi, Spectrochim. Acta B 57, 121 (2002)Google Scholar
  31. V. Sturm, J. Vrenegor, R. Noll, M. Hemmerlin, J. Anal. At. Spectrom. 19, 451 (2004)Google Scholar
  32. J. Gruber et al., Spectrochim. Acta B 56 685 (2001)Google Scholar
  33. J.M. Vadillo, C.C. García, S. Palanco, J.J. Laserna, J. Anal. At. Spectrom. 13, 793 (1998)Google Scholar
  34. L. St-Onge, M. Sabsabi, Spectrochim. Acta B 55, 299 (2000)Google Scholar
  35. X. Mao, W.-T. Chan, M. Caetano, M.A. Shannon, R.E. Russo, Appl. Surf. Sci. 96-98, 126 (1996)Google Scholar
  36. J.A. Aguilera, C. Aragón, F. Peñalba, Appl. Surf. Sci. 127-129, 309 (1998)Google Scholar
  37. C. Aragón, J. Bengoechea, J.A. Aguilera, Spectrochim. Acta B, 56, 619 (2001)Google Scholar
  38. C. Aragón, V. Madurga, J.A. Aguilera, Appl. Surf. Sci. 197-198, 217 (2002)Google Scholar
  39. J.A. Aguilera, C. Aragón, Appl. Surf. Sci. 197-198, 273 (2002)Google Scholar
  40. http://cfa-www.harvard.edu/amdata/ampdata/kurucz23/sekur.htmlGoogle Scholar
  41. A. Afir, M. Achour, N. Saoula, J. Alloys Comp. 288, 124 (1999)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • H. Estupiñán
    • 1
  • D. Y. Peña
    • 1
  • Y. O. García
    • 1
  • R. Cabanzo
    • 2
  • E. Mejía-Ospino
    • 2
  1. 1.Grupo de Investigaciones en Corrosión, Universidad Industrial de SantanderBucaramangaColombia
  2. 2.Laboratorio de Espectroscopia Atómica y MolecularUniversidad Industrial de SantanderBucaramangaColombia

Personalised recommendations