The European Physical Journal D

, Volume 54, Issue 2, pp 439–444 | Cite as

Plasma-based X-ray laser at 21 nm for multidisciplinary applications

  • T. Mocek
  • B. Rus
  • M. Kozlová
  • J. Polan
  • P. Homer
  • K. Jakubczak
  • M. Stupka
  • D. Snopek
  • J. Nejdl
  • M. H. Edwards
  • D. S. Whittaker
  • G. J. Tallents
  • P. Mistry
  • G. J. Pert
  • N. Booth
  • Z. Zhai
  • M. Fajardo
  • P. Zeitoun
  • J. Chalupský
  • V. Hájková
  • L. Juha
Topical issue: 23rd Symposium on Plasma Physics and Technology

Abstract

An overview of recent advances in applications of currently the most energetic X-ray laser at 21 nm is given. The unique parameters of this half-cavity based X-ray laser such as record output energy of 10 mJ, highly symmetric beam, robustness and reproducibility, have made it possible to carry out a number of multidisciplinary scientific projects featuring novel applications of intense coherent X-ray radiation. Selected results obtained in these experiments are reviewed, including X-ray laser probing of dense plasmas, measurements of transmission of focused soft X-ray radiation at intensities of up to 1012 W cm-2, measurements of infrared laser ablation rates of thin foils, and ablative microstructuring of solids.

PACS

42.55.Vc X- and gamma-ray lasers 52.50.Jm Plasma production and heating by laser beams (laser-foil, laser-cluster, etc.) 52.38.Mf Laser ablation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Jaeglé, Coherent Sources of XUV Radiation, 1st edn. (Springer, New York, 2006) Google Scholar
  2. H. Daido, Rep. Prog. Phys. 65, 1513 (2002) Google Scholar
  3. K. Jungwirth et al., Phys. Plasmas 8, 2495 (2001) Google Scholar
  4. B. Rus et al., Phys. Rev. A 66, 063806 (2002) Google Scholar
  5. T. Mocek et al., J. Opt. Soc. Am. B 20, 1386 (2003) Google Scholar
  6. T. Mocek et al., Appl. Phys. Lett. 89, 051501 (2006) Google Scholar
  7. B. Rus et al., submitted Google Scholar
  8. M.H. Edwards et al., Phys. Rev. Lett. 99, 195002 (2007) Google Scholar
  9. C. Fauquignon, F. Floux, Phys. Fluids 13, 386 (1970) Google Scholar
  10. D.W. Forslund et al., Phys. Rev. A 11, 679 (1975) Google Scholar
  11. H. Puell, Z. Naturforsch. A 24, 1807 (1970) Google Scholar
  12. C.E. Max et al., Phys. Rev. Lett. 45, 28 (1980) Google Scholar
  13. K. Anderson et al., Phys. Plasmas 10, 4448 (2003) Google Scholar
  14. D.B. Chrisey, G.K. Hubler, Pulsed Laser Deposition of Thin Films(Wiley, New York, 1994) Google Scholar
  15. T. Mocek et al., Opt. Lett. 33, 1087 (2008) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • T. Mocek
    • 1
  • B. Rus
    • 1
  • M. Kozlová
    • 1
  • J. Polan
    • 1
  • P. Homer
    • 1
  • K. Jakubczak
    • 1
  • M. Stupka
    • 1
  • D. Snopek
    • 1
  • J. Nejdl
    • 1
  • M. H. Edwards
    • 2
  • D. S. Whittaker
    • 2
  • G. J. Tallents
    • 2
  • P. Mistry
    • 2
  • G. J. Pert
    • 2
  • N. Booth
    • 2
  • Z. Zhai
    • 2
  • M. Fajardo
    • 3
  • P. Zeitoun
    • 4
  • J. Chalupský
    • 1
  • V. Hájková
    • 1
  • L. Juha
    • 1
  1. 1.Institute of Physics/PALS CentrePrague 8Czech Republic
  2. 2.University of YorkYorkUK
  3. 3.Instituto Superior TécnicoLisbonPortugal
  4. 4.Laboratoire d’Optique Appliquée, ENSTAPalaiseauFrance

Personalised recommendations